5 research outputs found

    Exploring medical cannabis use in individuals with a traumatic brain injury

    Get PDF
    Aim: Traumatic brain injury (TBI) is a common neurological condition, which can present with a wide range of neuropsychological symptoms. Treating this broad spectrum of symptoms represents a significant medical challenge. In part because of this, there is growing interest in the use of medical cannabis to treat the sequelae of TBI, as medical cannabis has been used to treat multiple associated conditions, such as pain. However, medical cannabis represents a heterogeneous collection of therapies, and relatively little is known about their effectiveness in treating TBI symptoms. The aim of the present study was therefore to assess medical cannabis use in patients with TBI. Methods: In the present study, a retrospective chart review was conducted of patterns of cannabis use and TBI symptoms in individuals who used medical cannabis to treat TBI-related symptoms. All subjects were recruited from a medical cannabis clinic, where cannabis was authorized by physicians, using licensed cannabis products. A total of 53 subjects provided written consent to have their charts reviewed. Results: Neuropsychiatric conditions, including depression, pain, and anxiety were frequent in this group. The most common forms of medical cannabis consumption at intake included smoking, vaping, and oral ingestion. Patients used a combination of high tetrahydrocannabinol (THC)/low cannabidiol (CBD) and low THC/high CBD products, typically 1–3 times per day. Medical cannabis appeared to be relatively well-tolerated in subjects, with few serious side effects. At follow-up, subjects self-reported improvements in TBI symptoms, although these were not statistically significant when assessed using validated questionnaires. Conclusions: Overall findings indicate modest potential benefits of medical cannabis for TBI, but further research will be required to validate these results

    MRI-derived g-ratio and lesion severity in newly diagnosed multiple sclerosis

    Get PDF
    Myelin loss is associated with axonal damage in established multiple sclerosis. This relationship is challenging to study in vivo in early disease. Here, we ask whether myelin loss is associated with axonal damage at diagnosis, by combining non-invasive neuroimaging and blood biomarkers. We performed quantitative microstructural MRI and single molecule ELISA plasma neurofilament measurement in 73 patients with newly diagnosed, immunotherapy naïve relapsing-remitting multiple sclerosis. Myelin integrity was evaluated using aggregate g-ratios, derived from magnetization transfer saturation (MTsat) and neurite orientation dispersion and density imaging (NODDI) diffusion data. We found significantly higher g-ratios within cerebral white matter lesions (suggesting myelin loss) compared with normal-appearing white matter (0.61 vs 0.57, difference 0.036, 95% CI 0.029 to 0.043, p < 0.001). Lesion volume (Spearman’s rho rs= 0.38, p < 0.001) and g-ratio (rs= 0.24 p < 0.05) correlated independently with plasma neurofilament. In patients with substantial lesion load (n = 38), those with higher g-ratio (defined as greater than median) were more likely to have abnormally elevated plasma neurofilament than those with normal g-ratio (defined as less than median) (11/23 [48%] versus 2/15 [13%] p < 0.05). These data suggest that, even at multiple sclerosis diagnosis, reduced myelin integrity is associated with axonal damage. MRI-derived g-ratio may provide useful additional information regarding lesion severity, and help to identify individuals with a high degree of axonal damage at disease onset. York, Martin et al. simultaneously measured g-ratio and plasma neurofilament in 73 relapsing-remitting multiple sclerosis patients at diagnosis using advanced MRI and single molecule ELISA. They demonstrate that g-ratio of cerebral white matter lesions varies at diagnosis, and show that high g-ratio of lesions is associated with elevated plasma neurofilament

    Analysis of Outcomes in Ischemic vs Nonischemic Cardiomyopathy in Patients With Atrial Fibrillation A Report From the GARFIELD-AF Registry

    No full text
    IMPORTANCE Congestive heart failure (CHF) is commonly associated with nonvalvular atrial fibrillation (AF), and their combination may affect treatment strategies and outcomes
    corecore