14,747 research outputs found

    High index top layer for multimaterial coatings

    Get PDF
    For application in future cryogenically cooled gravitational wave detectors, the thermal noise of low absorbing mirror coatings has to be reduced. The development of low mechanical and optical loss materials is challenging, but thermal noise reduction can be significantly supported by using a multimaterial coating design. We analyze the possible improvement of the total (optical and mechanical) loss of a three-material based coating obtained by optimizing the properties of the top layer of the coating stack. A top-layer material with sufficiently high refractive index could have a significantly higher optical and mechanical loss than currently used tantala, while still enabling reduction of the total coating loss. Restrictions on possible top-layer material properties are made, and the option of a crystalline top layer is discussed

    Investigation of Force Decay in Aesthetic, Fibre-Reinforced Composite Orthodontic Archwires

    Get PDF
    Background/Objectives: Because polymer-based materials typically exhibit viscoelastic properties, the objective was to determine if commercially available, aesthetic, fibre-reinforced composite archwires maintain continuous forces without undergoing force decay when deflected continuously. Materials/Methods: Quasi force decay was evaluated by comparing three-point bending profiles of nickel–titanium (NiTi) and fibre-reinforced composite archwires (BioMers) prior to and after 30 days of continuous deflection of either 1 or 2mm. Paired t-tests or non-parametric signed rank tests were used to statistically compare pre- and post-deflection bending forces. A control group consisting of wires not subject to the 30-day constant deflection was tested to check whether the initial testing altered the second three-point bend test. Results: Significant (P \u3c 0.01) differences in the pre- and post-deflection deactivation force delivery were most evident in the composite 2mm deflection group and all of the NiTi groups. The composite 2mm deflection group failed to deliver consistent forces as the majority of the wires experienced crazing during the 30-day deflection period. The decrease in force delivery in the NiTi groups may be attributed to the small standard deviations. Conclusions: The composite 1mm deflection group demonstrated that fibre-reinforced composite archwires are able to deliver a consistent force after 30 days of deflection. However, the clinical applicability of these fibre-reinforced composite archwires may be limited as they are unable to sustain deflections of 2mm without experiencing crazing and loss of force delivery. Limitations: Clinical efficacy of the aesthetic, fibre-reinforced composite orthodontic archwires remains to be observed

    The Effect of Water Storage on the Bending Properties of Esthetic, Fiber-Reinforced Composite Orthodontic Archwires

    Get PDF
    Objective: To study the effect of water storage on the bending properties of fiber-reinforced composite archwires and compare it to nickel-titanium (NiTi), stainless steel (SS), and beta-titanium archwires. Materials and Methods: Align A, B, and C and TorQ A and B composite wires from BioMers Products, 0.014-, 0.016, and 0.018-inch, and 0.019 × 0.025-inch NiTi, 0.016-inch SS, and 0.019 × 0.025-inch beta-titanium archwires were tested (n  =  10/type/size/condition). A 20-mm segment was cut from each end of the archwire; one end was then stored in water at 37°C for 30 days, while the other was stored dry. The segments were tested using three-point bending to a maximum deflection of 3.1 mm with force monitored during loading (activation) and unloading (deactivation). Statistical analysis was completed via two-way analysis of variance with wire and condition (dry and water-stored) as factors. Results: In terms of stiffness and force delivery during activation, in general: beta-titanium was \u3e TorQ B \u3e TorQ A \u3e 0.019 × 0.025-inch NiTi and 0.016-inch SS \u3e Align C \u3e 0.018-inch NiTi \u3e Align B \u3e 0.016-inch NiTi \u3e Align A \u3e 0.014-inch NiTi. Water exposure was detrimental to the larger translucent wires (Align B and C, TorQ A and B) because they were more likely to craze during bending, resulting in decreased forces applied at a given deflection. Align A and the alloy wires were not significantly (P\u3e .05) affected by water storage. Overall, the alloy wires possessed more consistent force values compared to the composite wires

    Fluctuations in Student Understanding of Newton's 3rd Law

    Full text link
    We present data from a between-student study on student response to questions on Newton's Third Law given throughout the academic year. The study, conducted at Rochester Institute of Technology, involved students from the first and third of a three-quarter sequence. Construction of a response curve reveals subtle dynamics in student learning not captured by simple pre/post testing. We find a a significant positive effect from direct instruction, peaking at the end of instruction on forces, that diminishes by the end of the quarter. Two quarters later, in physics III, a significant dip in correct response occurs when instruction changes from the vector quantities of electric forces and fields to the scalar quantity of electric potential. Student response rebounds to its initial values, however, once instruction returns to the vector-based topics involving magnetic fields.Comment: Proceedings of the 2010 Physics Education Research Conferenc

    Radial Trends in IMF-Sensitive Absorption Features in Two Early-Type Galaxies: Evidence for Abundance-Driven Gradients

    Get PDF
    Samples of early-type galaxies show a correlation between stellar velocity dispersion and the stellar initial mass function (IMF) as inferred from gravity-sensitive absorption lines in the galaxies' central regions. To search for spatial variations in the IMF, we have observed two early-type galaxies with Keck/LRIS and measured radial gradients in the strengths of absorption features from 4000-5500 \AA \, and 8000-10,000 \AA. We present spatially resolved measurements of the dwarf-sensitive spectral indices NaI (8190 \AA) and Wing-Ford FeH (9915 \AA), as well as indices for species of H, C2_2, CN, Mg, Ca, TiO, and Fe. Our measurements show a metallicity gradient in both objects, and Mg/Fe consistent with a shallow gradient in \alpha-enhancement, matching widely observed trends for massive early-type galaxies. The NaI index and the CN1_1 index at 4160 \AA \, exhibit significantly steeper gradients, with a break at r0.1reffr \sim 0.1 r_{\rm eff} (r300r \sim 300 pc). Inside this radius NaI strength increases sharply toward the galaxy center, consistent with a rapid central rise in [Na/Fe]. In contrast, the ratio of FeH to Fe index strength decreases toward the galaxy center. This behavior cannot be reproduced by a steepening IMF inside 0.1reff0.1 r_{\rm eff} if the IMF is a single power law. While gradients in the mass function above 0.4M\sim 0.4 M_\odot may occur, exceptional care is required to disentangle these IMF variations from the extreme variations in individual element abundances near the galaxies' centers.Comment: Accepted for publication in ApJ. Updates from v1 include an expanded comparison of measured index strengths to SPS models. 20 page body + 7 page appendix + references. Includes 25 figure

    Living \u3cem\u3eMore Than\u3c/em\u3e Just Enough for the City: Persistence of High-Quality Vegetation in Natural Areas in an Urban Setting

    Get PDF
    Urban environments pose special challenges to flora, including altered disturbance regimes, habitat fragmentation, and increased opportunity for invasion by non-native species. In addition, urban natural area represents most people’s contact with nature, given the majority of the world’s population currently live in cities. We used coefficients of conservatism (C-values), a system that ranks species based on perceived fidelity to remnant native plant communities that retain ecological integrity, to quantify habitat quality of 14 sites covering 850 ha within the city of Indianapolis, Indiana, in the Midwestern United States. All sites contained significant natural area and were inventoried via intensive complete censuses throughout one or two growing seasons within the last 15 years. Mean C-values for five sites were high, especially when compared to values reported for the highest quality preserves in central Indiana. However, for most sites the difference in mean C-value with and without non-natives was rather high, meaning that natural quality is likely to have been compromised by the presence of non-natives. Sites receiving the highest levels of stewardship and those with the least public access via trails had the highest mean native C-values. A total of 34 invasive non-native species were found across all 14 sites. Most were woody species. Mean C-value over all sites was significantly negatively correlated with the number of non-natives present, especially those considered invasive. These results demonstrate for the Indianapolis area, and likely other urbanized Midwestern cities, remnant natural areas can retain high ecological value, especially if they receive regular environmental stewardship

    Scaling up from greenhouse resistance to fitness in the field for a host of an emerging forest disease.

    Get PDF
    Forest systems are increasingly threatened by emergent, exotic diseases, yet management strategies for forest trees may be hindered by long generation times and scant background knowledge. We tested whether nursery disease resistance and growth traits have predictive value for the conservation of Notholithocarpus densiflorus, the host most susceptible to sudden oak death. We established three experimental populations to assess nursery growth and resistance to Phytophthora ramorum, and correlations between nursery-derived breeding values with seedling survival in a field disease trial. Estimates of nursery traits' heritability were low to moderate, with lowest estimates for resistance traits. Within the field trial, survival likelihood was increased in larger seedlings and decreased with the development of disease symptoms. The seed-parent family wide likelihood of survival was likewise correlated with family predictors for size and resistance to disease in 2nd year laboratory assays, though not resistance in 1st year leaf assays. We identified traits and seedling families with increased survivorship in planted tanoaks, and a framework to further identify seed parents favored for restoration. The additive genetic variation and seedling disease dynamics we describe hold promise to refine current disease models and expand the understanding of evolutionary dynamics of emergent infectious diseases in highly susceptible hosts

    Effect of stress and temperature on the optical properties of silicon nitride membranes at 1550 nm

    Get PDF
    Future gravitational-wave detectors operated at cryogenic temperatures are expected to be limited by thermal noise of the highly reflective mirror coatings. Silicon nitride is an interesting material for such coatings as it shows very low mechanical loss, a property related to low thermal noise, which is known to further decrease under stress. Low optical absorption is also required to maintain the low mirror temperature. Here, we investigate the effect of stress on the optical properties at 1,550 nm of silicon nitride membranes attached to a silicon frame. Our approach includes the measurement of the thermal expansion coefficient and the thermal conductivity of the membranes. The membrane and frame temperatures are varied, and translated into a change in stress using finite element modeling. The resulting product of the optical absorption and thermo-optic coefficient (dn/dT) is measured using photothermal common-path interferometry
    corecore