16 research outputs found

    Edgetic Perturbations Contribute to Phenotypic Variability in PEX26 Deficiency

    Get PDF
    Peroxisomes share metabolic pathways with other organelles and peroxisomes are embedded into key cellular processes. However, the specific function of many peroxisomal proteins remains unclear and restricted knowledge of the peroxisomal protein interaction network limits a precise mapping of this network into the cellular metabolism. Inborn peroxisomal disorders are autosomal or X-linked recessive diseases that affect peroxisomal biogenesis (PBD) and/or peroxisomal metabolism. Pathogenic variants in the PEX26 gene lead to peroxisomal disorders of the full Zellweger spectrum continuum. To investigate the phenotypic complexity of PEX26 deficiency, we performed a combined organelle protein interaction screen and network medicine approach and 1) analyzed whether PEX26 establishes interactions with other peroxisomal proteins, 2) deciphered the PEX26 interaction network, 3) determined how PEX26 is involved in further processes of peroxisomal biogenesis and metabolism, and 4) showed how variant-specific disruption of protein-protein interactions (edgetic perturbations) may contribute to phenotypic variability in PEX26 deficient patients. The discovery of 14 novel protein-protein interactions for PEX26 revealed a hub position of PEX26 inside the peroxisomal interactome. Analysis of edgetic perturbations of PEX26 variants revealed a strong correlation between the number of affected protein-protein interactions and the molecular phenotype of matrix protein import. The role of PEX26 in peroxisomal biogenesis was expanded encompassing matrix protein import, division and proliferation, and membrane assembly. Moreover, the PEX26 interaction network intersects with cellular lipid metabolism at different steps. The results of this study expand the knowledge about the function of PEX26 and refine genotype-phenotype correlations, which may contribute to our understanding of the underlying disease mechanism of PEX26 deficiency

    Organic acidurias: Major gaps, new challenges, and a yet unfulfilled promise

    Get PDF
    Organic acidurias (OADs) comprise a biochemically defined group of inherited metabolic diseases. Increasing awareness, reliable diagnostic work-up, newborn screening programs for some OADs, optimized neonatal and intensive care, and the development of evidence-based recommendations have improved neonatal survival and short-term outcome of affected individuals. However, chronic progression of organ dysfunction in an aging patient population cannot be reliably prevented with traditional therapeutic measures. Evidence is increasing that disease progression might be best explained by mitochondrial dysfunction. Previous studies have demonstrated that some toxic metabolites target mitochondrial proteins inducing synergistic bioenergetic impairment. Although these potentially reversible mechanisms help to understand the development of acute metabolic decompensations during catabolic state, they currently cannot completely explain disease progression with age. Recent studies identified unbalanced autophagy as a novel mechanism in the renal pathology of methylmalonic aciduria, resulting in impaired quality control of organelles, mitochondrial aging and, subsequently, progressive organ dysfunction. In addition, the discovery of post-translational short-chain lysine acylation of histones and mitochondrial enzymes helps to understand how intracellular key metabolites modulate gene expression and enzyme function. While acylation is considered an important mechanism for metabolic adaptation, the chronic accumulation of potential substrates of short-chain lysine acylation in inherited metabolic diseases might exert the opposite effect, in the long run. Recently, changed glutarylation patterns of mitochondrial proteins have been demonstrated in glutaric aciduria type 1. These new insights might bridge the gap between natural history and pathophysiology in OADs, and their exploitation for the development of targeted therapies seems promising

    Specific Loss of Histone H3 Lysine 9 Trimethylation and HP1γ/Cohesin Binding at D4Z4 Repeats Is Associated with Facioscapulohumeral Dystrophy (FSHD)

    Get PDF
    Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant muscular dystrophy in which no mutation of pathogenic gene(s) has been identified. Instead, the disease is, in most cases, genetically linked to a contraction in the number of 3.3 kb D4Z4 repeats on chromosome 4q. How contraction of the 4qter D4Z4 repeats causes muscular dystrophy is not understood. In addition, a smaller group of FSHD cases are not associated with D4Z4 repeat contraction (termed “phenotypic” FSHD), and their etiology remains undefined. We carried out chromatin immunoprecipitation analysis using D4Z4–specific PCR primers to examine the D4Z4 chromatin structure in normal and patient cells as well as in small interfering RNA (siRNA)–treated cells. We found that SUV39H1–mediated H3K9 trimethylation at D4Z4 seen in normal cells is lost in FSHD. Furthermore, the loss of this histone modification occurs not only at the contracted 4q D4Z4 allele, but also at the genetically intact D4Z4 alleles on both chromosomes 4q and 10q, providing the first evidence that the genetic change (contraction) of one 4qD4Z4 allele spreads its effect to other genomic regions. Importantly, this epigenetic change was also observed in the phenotypic FSHD cases with no D4Z4 contraction, but not in other types of muscular dystrophies tested. We found that HP1γ and cohesin are co-recruited to D4Z4 in an H3K9me3–dependent and cell type–specific manner, which is disrupted in FSHD. The results indicate that cohesin plays an active role in HP1 recruitment and is involved in cell type–specific D4Z4 chromatin regulation. Taken together, we identified the loss of both histone H3K9 trimethylation and HP1γ/cohesin binding at D4Z4 to be a faithful marker for the FSHD phenotype. Based on these results, we propose a new model in which the epigenetic change initiated at 4q D4Z4 spreads its effect to other genomic regions, which compromises muscle-specific gene regulation leading to FSHD pathogenesis

    Interaction of glutaric aciduria type 1-related glutaryl-CoA dehydrogenase with mitochondrial matrix proteins.

    Get PDF
    Glutaric aciduria type 1 (GA1) is an inherited neurometabolic disorder caused by mutations in the GCDH gene encoding glutaryl-CoA dehydrogenase (GCDH), which forms homo- and heteromeric complexes in the mitochondrial matrix. GA1 patients are prone to the development of encephalopathic crises which lead to an irreversible disabling dystonic movement disorder. The clinical and biochemical manifestations of GA1 vary considerably and lack correlations to the genotype. Using an affinity chromatography approach we report here for the first time on the identification of mitochondrial proteins interacting directly with GCDH. Among others, dihydrolipoamide S-succinyltransferase (DLST) involved in the formation of glutaryl-CoA, and the β-subunit of the electron transfer flavoprotein (ETFB) serving as electron acceptor, were identified as GCDH binding partners. We have adapted the yellow fluorescent protein-based fragment complementation assay and visualized the oligomerization of GCDH as well as its direct interaction with DLST and ETFB in mitochondria of living cells. These data suggest that GCDH is a constituent of multimeric mitochondrial dehydrogenase complexes, and the characterization of their interrelated functions may provide new insights into the regulation of lysine oxidation and the pathophysiology of GA1

    Organic acidurias: Major gaps, new challenges, and a yet unfulfilled promise

    Get PDF
    Organic acidurias (OADs) comprise a biochemically defined group of inherited metabolic diseases. Increasing awareness, reliable diagnostic work‐up, newborn screening programs for some OADs, optimized neonatal and intensive care, and the development of evidence‐based recommendations have improved neonatal survival and short‐term outcome of affected individuals. However, chronic progression of organ dysfunction in an aging patient population cannot be reliably prevented with traditional therapeutic measures. Evidence is increasing that disease progression might be best explained by mitochondrial dysfunction. Previous studies have demonstrated that some toxic metabolites target mitochondrial proteins inducing synergistic bioenergetic impairment. Although these potentially reversible mechanisms help to understand the development of acute metabolic decompensations during catabolic state, they currently cannot completely explain disease progression with age. Recent studies identified unbalanced autophagy as a novel mechanism in the renal pathology of methylmalonic aciduria, resulting in impaired quality control of organelles, mitochondrial aging and, subsequently, progressive organ dysfunction. In addition, the discovery of post‐translational short‐chain lysine acylation of histones and mitochondrial enzymes helps to understand how intracellular key metabolites modulate gene expression and enzyme function. While acylation is considered an important mechanism for metabolic adaptation, the chronic accumulation of potential substrates of short‐chain lysine acylation in inherited metabolic diseases might exert the opposite effect, in the long run. Recently, changed glutarylation patterns of mitochondrial proteins have been demonstrated in glutaric aciduria type 1. These new insights might bridge the gap between natural history and pathophysiology in OADs, and their exploitation for the development of targeted therapies seems promising

    Co-Precipitation of DLST with GCDH.

    No full text
    <p>Extracts from HeLa cells overexpressing the DLST-His<sub>6</sub> alone (DLST) or together with GCDH-Myc (DLST+GCDH) were incubated with Ni-NTA agarose for 4 h. Aliquots of the cell extract (input, I: 10% of total), the unbound protein supernatant after precipitation of Ni-NTA beads (S, 10%), the last wash (W, 25%) and the eluted fraction (E, 100%) representing bound proteins, were analyzed by successively exposing the blot to anti-GCDH and, after stripping, to anti-DLST antibodies. Extracts of HeLa cells overexpressing DLST-His<sub>6</sub> and LC3-GFP (DLST+LC3) were used as negative control and analyzed by anti-LC3 western blotting. The expression of DLST was analyzed by anti-DLST western blotting. The position of the 40 kDa molecular mass marker protein is indicated. The figure shows a representative blot of n = 3 independent experiments.</p

    Interaction of GCDH with ETFB <i>in vivo</i>.

    No full text
    <p>(<b>A</b>) Schematic representation of GCDH and ETFB fusion proteins with YFP1 (dark blue) and YFP2 (red). The 10-amino acid linker (GGGGS)<sub>2</sub> is indicated in green. The calculated molecular masses of the respective fusions proteins are shown in brackets. (<b>B</b>) The expression of the various fusion proteins used in this study were analyzed by western blotting. The 43 kDa band (*) reactive with the anti-ETFB antibody is unspecific. (<b>C</b>) Fluorescence microscopy of fixed BHK cells co-expressing GCDH and ETFB fusion proteins showed a strong YFP fluorescence. Nuclei were visualized using DAPI (blue). Scale bars = 40 µM. Representative images of n = 3 independent transfection experiments are shown.</p

    Mitochondrial proteins binding to GCDH.

    No full text
    <p>GCDH-His<sub>6</sub> was immobilized on beads and incubated with isolated mitochondrial matrix proteins from pig liver. The identity of specifically co-purifying proteins was determined by LC-MS/MS.</p><p>M: mitochondrial matrix; IM: inner mitochondrial membrane.</p

    YFP fragment complementation assay demonstrates the interaction of GCDH with DLST <i>in vivo</i>.

    No full text
    <p>(<b>A</b>) Schematic composition of C-terminal YFP1 (dark blue) and YFP2 (red) fusion proteins of DLST, GCDH and MCFD2 used in this study. The 10-amino acid linker (GGGGS)<sub>2</sub> is indicated in green. The calculated molecular masses of the fusion proteins are shown in brackets. The ERGIC marker protein MCFD2-YFP2 was used as negative control. (<b>B</b>) Expression analysis in BHK cells of all fusion proteins visualized by western blotting, using anti-DLST, anti-GCDH and anti-GFP antibodies. (<b>C</b>) Fluorescence microscopy of the indicated single or co-expressed fusion proteins. Strong YFP fluorescence was observed in cells co-expressing either GCDH-YFP1 with DLST-YFP2 or GCDH-YFP2 with DLST-YFP1. Nuclei were visualized using DAPI (blue). Scale bars = 40 µM. Representative images of n = 3 independent transfection experiments are shown.</p

    GCDH affinity chromatography of mitochondrial matrix extracts.

    No full text
    <p>Purified GCDH was covalently coupled to Affi-Gel 10 matrix and incubated with isolated mitochondrial matrix proteins. Aliquots of the loaded extract (input, I: 10% of total protein), the last wash fraction (W, 25%) and the high salt elution fraction (E, 100%) were separated by SDS-PAGE (10% acrylamide) and tested by anti-DLST (<b>A</b>) and anti-ETFB (<b>B</b>) western blotting. Non-coupled Affi-gel 10 beads were used as a control for unspecific binding. The positions of the molecular mass marker proteins (in kDa) are given. A representative blot of n = 3 independent preparations is shown.</p
    corecore