61 research outputs found

    Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering

    Get PDF
    This is the pre-peer reviewed version of the following article: Mansfield, J., Moger, J., Green, E., Moger, C. and Winlove, C. P. (2013), Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering. J. Biophoton., 6: 803–814. doi: 10.1002/jbio.201200213, which has been published in final form at http://dx.doi.org/10.1002/jbio.201200213.© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimStimulated Raman scattering (SRS) has been applied to unstained samples of articular cartilage enabling the investigation of living cells within fresh tissue. Hyperspectral SRS measurements over the CH vibrational region showed variations in protein and lipid content within the cells, pericellular matrix and interterritorial matrix. Changes in the cells and pericellular matrix were investigated as a function of depth into the cartilage. Lipid was detected in the pericellular matrix of superficial zone chondrocytes. The spectral profile of lipid droplets within the chondrocytes indicated that they contained predominantly unsaturated lipids. The mineral content has been imaged by using the PO₄³⁻ vibration at 959 cm⁻¹ and the CO₃²⁻ vibration at 1070 cm⁻¹. Both changes in cells and mineralization are known to be important factors in the progression of osteoarthritis. SRS enables these to be visualized in fresh unstained tissue and consequently should benefit osteoarthiritis research

    Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy

    Get PDF
    Jessica C. Mansfield ; C. Peter Winlove ; Julian Moger and Steve J. Matcher "Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy", J. Biomed. Opt. 13(4), 044020 (July 15, 2008). Copyright © 2008 Society of Photo-Optical Instrumentation EngineersSecond harmonic generation (SHG) and two-photon fluorescence (TPF) microscopy is used to image the intercellular and pericellular matrix in normal and degenerate equine articular cartilage. The polarization sensitivity of SHG can be used directly to determine fiber orientation in the superficial 10 to 20 microm of tissue, and images of the ratio of intensities taken with two orthogonal polarization states reveal small scale variations in the collagen fiber organization that have not previously been reported. The signal from greater depths is influenced by the birefringence and biattenuance of the overlying tissue. An assessment of these effects is developed, based on the analysis of changes in TPF polarization with depth, and the approach is validated in tendon where composition is independent of depth. The analysis places an upper bound on the biattenuance of tendon of 2.65 x 10(-4). Normal cartilage reveals a consistent pattern of variation in fibril orientation with depth. In lesions, the pattern is severely disrupted and there are changes in the pericellular matrix, even at the periphery where the tissue appears microscopically normal. Quantification of polarization sensitivity changes with depth in cartilage will require detailed numerical models, but in the meantime, multiphoton microscopy provides sensitive indications of matrix changes in cartilage degeneration

    Label-free chemically specific imaging in planta with stimulated Raman scattering microscopy.

    Get PDF
    The growing world population puts ever-increasing demands on the agricultural and agrochemical industries to increase agricultural yields. This can only be achieved by investing in fundamental plant and agrochemical research and in the development of improved analytical tools to support research in these areas. There is currently a lack of analytical tools that provide noninvasive structural and chemical analysis of plant tissues at the cellular scale. Imaging techniques such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy provide label-free chemically specific image contrast based on vibrational spectroscopy. Over the past decade, these techniques have been shown to offer clear advantages for a vast range of biomedical research applications. The intrinsic vibrational contrast provides label-free quantitative functional analysis, it does not suffer from photobleaching, and it allows near real-time imaging in 3D with submicrometer spatial resolution. However, due to the susceptibility of current detection schemes to optical absorption and fluorescence from pigments (such as chlorophyll), the plant science and agrochemical research communities have not been able to benefit from these techniques and their application in plant research has remained virtually unexplored. In this paper, we explore the effect of chlorophyll fluorescence and absorption in CARS and SRS microscopy. We show that with the latter it is possible to use phase-sensitive detection to separate the vibrational signal from the (electronic) absorption processes. Finally, we demonstrate the potential of SRS for a range of in planta applications by presenting in situ chemical analysis of plant cell wall components, epicuticular waxes, and the deposition of agrochemical formulations onto the leaf surface

    Matrix-Bound Growth Factors are Released upon Cartilage Compression by an Aggrecan-Dependent Sodium Flux that is Lost in Osteoarthritis

    Get PDF
    Articular cartilage is a dense extracellular matrix-rich tissue that degrades following chronic mechanical stress, resulting in osteoarthritis (OA). The tissue has low intrinsic repair especially in aged and osteoarthritic joints. Here, we describe three pro-regenerative factors; fibroblast growth factor 2 (FGF2), connective tissue growth factor, bound to transforming growth factor-beta (CTGF-TGFβ), and hepatoma-derived growth factor (HDGF), that are rapidly released from the pericellular matrix (PCM) of articular cartilage upon mechanical injury. All three growth factors bound heparan sulfate, and were displaced by exogenous NaCl. We hypothesised that sodium, sequestered within the aggrecan-rich matrix, was freed by injurious compression, thereby enhancing the bioavailability of pericellular growth factors. Indeed, growth factor release was abrogated when cartilage aggrecan was depleted by IL-1 treatment, and in severely damaged human osteoarthritic cartilage. A flux in free matrix sodium upon mechanical compression of cartilage was visualised by 23Na -MRI just below the articular surface. This corresponded to a region of reduced tissue stiffness, measured by scanning acoustic microscopy and second harmonic generation microscopy, and where Smad2/3 was phosphorylated upon cyclic compression. Our results describe a novel intrinsic repair mechanism, controlled by matrix stiffness and mediated by the free sodium concentration, in which heparan sulfate-bound growth factors are released from cartilage upon injurious load. They identify aggrecan as a depot for sequestered sodium, explaining why osteoarthritic tissue loses its ability to repair. Treatments that restore matrix sodium to allow appropriate release of growth factors upon load are predicted to enable intrinsic cartilage repair in OA

    Evolutionary History of Rabies in Ghana

    Get PDF
    Rabies virus (RABV) is enzootic throughout Africa, with the domestic dog (Canis familiaris) being the principal vector. Dog rabies is estimated to cause 24,000 human deaths per year in Africa, however, this estimate is still considered to be conservative. Two sub-Saharan African RABV lineages have been detected in West Africa. Lineage 2 is present throughout West Africa, whereas Africa 1a dominates in northern and eastern Africa, but has been detected in Nigeria and Gabon, and Africa 1b was previously absent from West Africa. We confirmed the presence of RABV in a cohort of 76 brain samples obtained from rabid animals in Ghana collected over an eighteen-month period (2007–2009). Phylogenetic analysis of the sequences obtained confirmed all viruses to be RABV, belonging to lineages previously detected in sub-Saharan Africa. However, unlike earlier reported studies that suggested a single lineage (Africa 2) circulates in West Africa, we identified viruses belonging to the Africa 2 lineage and both Africa 1 (a and b) sub-lineages. Phylogeographic Bayesian Markov chain Monte Carlo analysis of a 405 bp fragment of the RABV nucleoprotein gene from the 76 new sequences derived from Ghanaian animals suggest that within the Africa 2 lineage three clades co-circulate with their origins in other West African countries. Africa 1a is probably a western extension of a clade circulating in central Africa and the Africa 1b virus a probable recent introduction from eastern Africa. We also developed and tested a novel reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of RABV in African laboratories. This RT-LAMP was shown to detect both Africa 1 and 2 viruses, including its adaptation to a lateral flow device format for product visualization. These data suggest that RABV epidemiology is more complex than previously thought in West Africa and that there have been repeated introductions of RABV into Ghana. This analysis highlights the potential problems of individual developing nations implementing rabies control programmes in the absence of a regional programme

    Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b

    Get PDF
    Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5-12 μm with JWST's Mid-Infrared Instrument (MIRI). The spectra reveal a large day-night temperature contrast (with average brightness temperatures of 1524±35 and 863±23 Kelvin, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase curve shape and emission spectra strongly suggest the presence of nightside clouds which become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1-6 parts per million, depending on model assumptions)

    Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b

    Full text link
    Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5-12 μ\mum with JWST's Mid-Infrared Instrument (MIRI). The spectra reveal a large day-night temperature contrast (with average brightness temperatures of 1524±\pm35 and 863±\pm23 Kelvin, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase curve shape and emission spectra strongly suggest the presence of nightside clouds which become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ\sigma upper limit of 1-6 parts per million, depending on model assumptions).Comment: 61 pages, 13 figures, 4 tables. This preprint has been submitted to and accepted in principle for publication in Nature Astronomy without significant change

    Early Release Science of the exoplanet WASP-39b with JWST NIRISS

    Full text link
    Transmission spectroscopy provides insight into the atmospheric properties and consequently the formation history, physics, and chemistry of transiting exoplanets. However, obtaining precise inferences of atmospheric properties from transmission spectra requires simultaneously measuring the strength and shape of multiple spectral absorption features from a wide range of chemical species. This has been challenging given the precision and wavelength coverage of previous observatories. Here, we present the transmission spectrum of the Saturn-mass exoplanet WASP-39b obtained using the SOSS mode of the NIRISS instrument on the JWST. This spectrum spans 0.62.8μ0.6 - 2.8 \mum in wavelength and reveals multiple water absorption bands, the potassium resonance doublet, as well as signatures of clouds. The precision and broad wavelength coverage of NIRISS-SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favoring a heavy element enhancement ("metallicity") of 1030×\sim 10 - 30 \times the solar value, a sub-solar carbon-to-oxygen (C/O) ratio, and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are best explained by wavelength-dependent, non-gray clouds with inhomogeneous coverage of the planet's terminator.Comment: 48 pages, 12 figures, 2 tables. Under review at Natur
    corecore