1,486 research outputs found

    Bringing Salary Transparency to the World: Computing Robust Compensation Insights via LinkedIn Salary

    Full text link
    The recently launched LinkedIn Salary product has been designed with the goal of providing compensation insights to the world's professionals and thereby helping them optimize their earning potential. We describe the overall design and architecture of the statistical modeling system underlying this product. We focus on the unique data mining challenges while designing and implementing the system, and describe the modeling components such as Bayesian hierarchical smoothing that help to compute and present robust compensation insights to users. We report on extensive evaluation with nearly one year of de-identified compensation data collected from over one million LinkedIn users, thereby demonstrating the efficacy of the statistical models. We also highlight the lessons learned through the deployment of our system at LinkedIn.Comment: Conference information: ACM International Conference on Information and Knowledge Management (CIKM 2017

    Manipulation of the dynamics of many-body systems via quantum control methods

    Full text link
    We investigate how dynamical decoupling methods may be used to manipulate the time evolution of quantum many-body systems. These methods consist of sequences of external control operations designed to induce a desired dynamics. The systems considered for the analysis are one-dimensional spin-1/2 models, which, according to the parameters of the Hamiltonian, may be in the integrable or non-integrable limits, and in the gapped or gapless phases. We show that an appropriate control sequence may lead a chaotic chain to evolve as an integrable chain and a system in the gapless phase to behave as a system in the gapped phase. A key ingredient for the control schemes developed here is the possibility to use, in the same sequence, different time intervals between control operations.Comment: 10 pages, 3 figure

    Detection of solar-like oscillations in relics of the Milky Way: asteroseismology of K giants in M4 using data from the NASA K2 mission

    Get PDF
    Asteroseismic constraints on K giants make it possible to infer radii, masses and ages of tens of thousands of field stars. Tests against independent estimates of these properties are however scarce, especially in the metal-poor regime. Here, we report the detection of solar-like oscillations in 8 stars belonging to the red-giant branch and red-horizontal branch of the globular cluster M4. The detections were made in photometric observations from the K2 Mission during its Campaign 2. Making use of independent constraints on the distance, we estimate masses of the 8 stars by utilising different combinations of seismic and non-seismic inputs. When introducing a correction to the Delta nu scaling relation as suggested by stellar models, for RGB stars we find excellent agreement with the expected masses from isochrone fitting, and with a distance modulus derived using independent methods. The offset with respect to independent masses is lower, or comparable with, the uncertainties on the average RGB mass (4-10%, depending on the combination of constraints used). Our results lend confidence to asteroseismic masses in the metal poor regime. We note that a larger sample will be needed to allow more stringent tests to be made of systematic uncertainties in all the observables (both seismic and non-seismic), and to explore the properties of RHB stars, and of different populations in the cluster.Comment: 6 pages, 3 figures, accepted for publication in MNRA

    Quantum control of the hyperfine-coupled electron and nuclear spins in alkali atoms

    Full text link
    We study quantum control of the full hyperfine manifold in the ground-electronic state of alkali atoms based on applied radio frequency and microwave fields. Such interactions should allow essentially decoherence-free dynamics and the application of techniques for robust control developed for NMR spectroscopy. We establish the conditions under which the system is controllable in the sense that one can generate an arbitrary unitary on the system. We apply this to the case of 133^{133}Cs with its d=16d=16 dimensional Hilbert space of magnetic sublevels in the 6S1/26S_{1/2} state, and design control waveforms that generate an arbitrary target state from an initial fiducial state. We develop a generalized Wigner function representation for this space consisting of the direct sum of two irreducible representation of SU(2), allowing us to visualize these states. The performance of different control scenarios is evaluated based on the ability to generate high-fidelity operation in an allotted time with the available resources. We find good operating points commensurate with modest laboratory requirements.Comment: 14 pages, 7 figures; corrected typo

    Atom cooling and trapping by disorder

    Get PDF
    We demonstrate the possibility of three-dimensional cooling of neutral atoms by illuminating them with two counterpropagating laser beams of mutually orthogonal linear polarization, where one of the lasers is a speckle field, i.e. a highly disordered but stationary coherent light field. This configuration gives rise to atom cooling in the transverse plane via a Sisyphus cooling mechanism similar to the one known in standard two-dimensional optical lattices formed by several plane laser waves. However, striking differences occur in the spatial diffusion coefficients as well as in local properties of the trapped atoms.Comment: 11 figures (postscript

    Measuring the Quantum State of a Large Angular Momentum

    Get PDF
    We demonstrate a general method to measure the quantum state of an angular momentum of arbitrary magnitude. The (2F+1) x (2F+1) density matrix is completely determined from a set of Stern-Gerlach measurements with (4F+1) different orientations of the quantization axis. We implement the protocol for laser cooled Cesium atoms in the 6S_{1/2}(F=4) hyperfine ground state and apply it to a variety of test states prepared by optical pumping and Larmor precession. A comparison of input and measured states shows typical reconstruction fidelities of about 0.95.Comment: 4 pages, 6 figures, submitted to PR

    What asteroseismology can do for exoplanets

    Full text link
    We describe three useful applications of asteroseismology in the context of exoplanet science: (1) the detailed characterisation of exoplanet host stars; (2) the measurement of stellar inclinations; and (3) the determination of orbital eccentricity from transit duration making use of asteroseismic stellar densities. We do so using the example system Kepler-410 (Van Eylen et al. 2014). This is one of the brightest (V = 9.4) Kepler exoplanet host stars, containing a small (2.8 Rearth) transiting planet in a long orbit (17.8 days), and one or more additional non-transiting planets as indicated by transit timing variations. The validation of Kepler-410 (KOI-42) was complicated due to the presence of a companion star, and the planetary nature of the system was confirmed after analyzing a Spitzer transit observation as well as ground-based follow-up observations.Comment: 4 pages, Proceedings of the CoRoT Symposium 3 / Kepler KASC-7 joint meeting, Toulouse, 7-11 July 2014. To be published by EPJ Web of Conference
    corecore