348 research outputs found

    Ammonium Sulfate Concentration Conversion Nomograph for 0

    Get PDF
    A nomograph for the conversion of ammonium sulfate concentrations at 0° is presented in which concentration is expressed both in percentage of saturation and in molarity, and the number of grams of the salt to be added to any initial volume is given

    Physical and Functional Interaction of CARMA1 and CARMA3 with Iκ Kinase γ-NFκB Essential Modulator

    Get PDF
    CARMA proteins are scaffold molecules that contain a caspase recruitment domain and a membrane-associated guanylate kinase-like domain. CARMA1 plays a critical role in mediating activation of the NFkappaB transcription factor following antigen receptor stimulation of both B and T lymphocytes. However, the biochemical mechanism by which CARMA1 regulates activation of NFkappaB remains to be determined. Here we have shown that CARMA1 and CARMA3 physically associate with Ikappa kinase gamma/NFkappaB essential modulator (IkappaKgamma-NEMO) in lymphoid and non-lymphoid cells. CARMA1 participates to an inducible large molecular complex that contains IkappaKgamma/NEMO, Bcl10, and IkappaKalpha/beta kinases. Expression of the NEMO-binding region of CARMA3 exerts a dominant negative effect on Bcl10-mediated activation of NFkappaB. Thus, our results provide direct evidence for physical and functional interaction between CARMA and the IkappaK complex and offer a biochemical framework to understand the molecular activities controlled by CARMA-1, -2, and -3 and Bcl10

    Defective Thyroglobulin: Cell Biology of Disease

    Get PDF
    The primary functional units of the thyroid gland are follicles of various sizes comprised of a monolayer of epithelial cells (thyrocytes) surrounding an apical extracellular cavity known as the follicle lumen. In the normal thyroid gland, the follicle lumen is filled with secreted protein (referred to as colloid), comprised nearly exclusively of thyroglobulin with a half-life ranging from days to weeks. At the cellular boundary of the follicle lumen, secreted thyroglobulin becomes iodinated, resulting from the coordinated activities of enzymes localized to the thyrocyte apical plasma membrane. Thyroglobulin appearance in evolution is essentially synchronous with the appearance of the follicular architecture of the vertebrate thyroid gland. Thyroglobulin is the most highly expressed thyroid gene and represents the most abundantly expressed thyroid protein. Wildtype thyroglobulin protein is a large and complex glycoprotein that folds in the endoplasmic reticulum, leading to homodimerization and export via the classical secretory pathway to the follicle lumen. However, of the hundreds of human thyroglobulin genetic variants, most exhibit increased susceptibility to misfolding with defective export from the endoplasmic reticulum, triggering hypothyroidism as well as thyroidal endoplasmic reticulum stress. The human disease of hypothyroidism with defective thyroglobulin (either homozygous, or compound heterozygous) can be experimentally modeled in thyrocyte cell culture, or in whole animals, such as mice that are readily amenable to genetic manipulation. From a combination of approaches, it can be demonstrated that in the setting of thyroglobulin misfolding, thyrocytes under chronic continuous ER stress exhibit increased susceptibility to cell death, with interesting cell biological and pathophysiological consequences

    Investigation of Thermal Conductivity of water with Al2O3 Nanoparticles

    Get PDF
    In Thermal systems, Heat transfer fluids play a significant role. But conventional temperature transfer fluids have poor temperature transfer features. Many researches are created in order to improve the thermal properties of regular fluids. The improvement of thermal conductivity of regular fluids by micro-sized solid particles will not result in a valuable change. Therefore, Nanoparticles are put into it to create sizeable heat transfer liquids. Metal oxide nanoparticles i.e. Al2O3 is confusing with water and thermal conductivity of the blend is certainly investigated at different temperature ranges. It is discovered that the thermal conductivity boosts by 5%. The evaluation summarizes that the effective thermal conductivity of the Nano fluids boosts beyond 55°C

    Increased hexosamine biosynthetic pathway flux alters cell-cell adhesion in INS-1E cells and murine islets

    Get PDF
    Purpose In type 2 Diabetes, beta-cell failure is caused by loss of cell mass, mostly by apoptosis, but also by simple dysfunction (dedifferentiation, decline of glucose-stimulated insulin secretion). Apoptosis and dysfunction are caused, at least in part, by glucotoxicity, in which increased flux of glucose in the hexosamine biosynthetic pathway plays a role. In this study, we sought to clarify whether increased hexosamine biosynthetic pathway flux affects another important aspect of beta-cell physiology, that is beta-cell-beta-cell homotypic interactions. Methods We used INS-1E cells and murine islets. The expression and cellular distribution of E-cadherin and beta-catenin was evaluated by immunofluorescence, immunohistochemistry and western blot. Cell-cell adhesion was examined by the hanging-drop aggregation assay, islet architecture by isolation and microscopic observation. Results E-cadherin expression was not changed by increased hexosamine biosynthetic pathway flux, however, there was a decrease of cell surface, and an increase in intracellular E-cadherin. Moreover, intracellular E-cadherin delocalized, at least in part, from the Golgi complex to the endoplasmic reticulum. Beta-catenin was found to parallel the E-cadherin redistribution, showing a dislocation from the plasmamembrane to the cytosol. These changes had as a phenotypic consequence a decreased ability of INS-1E to aggregate. Finally, in ex vivo experiments, glucosamine was able to alter islet structure and to decrease surface abundandance of E-cadherin and beta-catenin. Conclusion Increased hexosamine biosynthetic pathway flux alters E-cadherin cellular localization both in INS-1E cells and murine islets and affects cell-cell adhesion and islet morphology. These changes are likely caused by alterations of E-cadherin function, highlighting a new potential target to counteract the consequences of glucotoxicity on beta-cells

    GRP78 Mediates Cell Growth and Invasiveness in Endometrial Cancer.

    Get PDF
    Abstract Recent studies have indicated that endoplasmic reticulum stress, the unfolded protein response activation and altered GRP78 expression can play an important role in a variety of tumors development and progression. Very recently we reported for the first time that GRP78 is increased in endometrial tumors. However, whether GRP78 could play a role in the growth and/or invasiveness of endometrial cancer cells is still unknown. Here we report that the silencing of GRP78 expression affects both cell growth and invasiveness of Ishikawa and AN3CA cells, analyzed by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) and transwell migration assay, respectively. At variance with Ishikawa cells, AN3CA cells showed, besides an endoplasmic reticulum, also a plasma membrane GRP78 localization, evidenced by both immunofluorescence and cell membrane biotinylation experiments. Intriguingly, flow cytometry experiments showed that the treatment with a specific antibody targeting GRP78 C-terminal domain caused apoptosis in AN3CA but not in Ishikawa cells. Induction of apoptosis in AN3CA cells was not mediated by the p53 pathway activation but was rather associated to reduced AKT phosphorylation. Interestingly, immunofluorescence analysis evidenced that endometrioid adenocarcinoma tissues displayed, similarly to AN3CA cells, also a GRP78 plasma membrane localization. These data suggest that GRP78 and its plasma membrane localization, might play a role in endometrial cancer development and progression and might constitute a novel target for the treatment of endometrial cancer

    Glucosamine-induced endoplasmic reticulum stress affects GLUT4 expression via activating transcription factor 6 in rat and human skeletal muscle cells

    Get PDF
    AIMS/HYPOTHESIS: Glucosamine, generated during hyperglycaemia, causes insulin resistance in different cells. Here we sought to evaluate the possible role of endoplasmic reticulum (ER) stress in the induction of insulin resistance by glucosamine in skeletal muscle cells. METHODS: Real-time RT-PCR analysis, 2-deoxy-D: -glucose (2-DG) uptake and western blot analysis were carried out in rat and human muscle cell lines. RESULTS: In both rat and human myotubes, glucosamine treatment caused a significant increase in the expression of the ER stress markers immunoglobulin heavy chain-binding protein/glucose-regulated protein 78 kDa (BIP/GRP78 [also known as HSPA5]), X-box binding protein-1 (XBP1) and activating transcription factor 6 (ATF6). In addition, glucosamine impaired insulin-stimulated 2-DG uptake in both rat and human myotubes. Interestingly, pretreatment of both rat and human myotubes with the chemical chaperones 4-phenylbutyric acid (PBA) or tauroursodeoxycholic acid (TUDCA), completely prevented the effect of glucosamine on both ER stress induction and insulin-induced glucose uptake. In both rat and human myotubes, glucosamine treatment reduced mRNA and protein levels of the gene encoding GLUT4 and mRNA levels of the main regulators of the gene encoding GLUT4 (myocyte enhancer factor 2 a [MEF2A] and peroxisome proliferator-activated receptor-gamma coactivator 1alpha [PGC1alpha]). Again, PBA or TUDCA pretreatment prevented glucosamine-induced inhibition of GLUT4 (also known as SLC2A4), MEF2A and PGC1alpha (also known as PPARGC1A). Finally, we showed that overproduction of ATF6 is sufficient to inhibit the expression of genes GLUT4, MEF2A and PGC1alpha and that ATF6 silencing with a specific small interfering RNA is sufficient to completely prevent glucosamine-induced inhibition of GLUT4, MEF2A and PGC1alpha in skeletal muscle cells. CONCLUSIONS/INTERPRETATION: In this work we show that glucosamine-induced ER stress causes insulin resistance in both human and rat myotubes and impairs GLUT4 production and insulin-induced glucose uptake via an ATF6-dependent decrease of the GLUT4 regulators MEF2A and PGC1alpha

    The Pervasive Effects of ER Stress on a Typical Endocrine Cell: Dedifferentiation, Mesenchymal Shift and Antioxidant Response in the Thyrocyte

    Get PDF
    none13noThe endoplasmic reticulum stress and the unfolded protein response are triggered following an imbalance between protein load and protein folding. Until recently, two possible outcomes of the unfolded protein response have been considered: life or death. We sought to substantiate a third alternative, dedifferentiation, mesenchymal shift, and activation of the antioxidant response by using typical endocrine cells, i.e. thyroid cells. The thyroid is a unique system both of endoplasmic reticulum stress (a single protein, thyroglobulin represents the majority of proteins synthesized in the endoplasmic reticulum by the thyrocyte) and of polarized epithelium (the single layer of thyrocytes delimiting the follicle). Following endoplasmic reticulum stress, in thyroid cells the folding of thyroglobulin was disrupted. The mRNAs of unfolded protein response were induced or spliced (X-box binding protein-1). Differentiation was inhibited: mRNA levels of thyroid specific genes, and of thyroid transcription factors were dramatically downregulated, at least in part, transcriptionally. The dedifferentiating response was accompanied by an upregulation of mRNAs of antioxidant genes. Moreover, cadherin-1, and the thyroid (and kidney)-specific cadherin-16 mRNAs were downregulated, vimentin, and SNAI1 mRNAs were upregulated. In addition, loss of cortical actin and stress fibers formation were observed. Together, these data indicate that ER stress in thyroid cells induces dedifferentiation, loss of epithelial organization, shift towards a mesenchymal phenotype, and activation of the antioxidant response, highlighting, at the same time, a new and wide strategy to achieve survival following ER stress, and, as a sort of the other side of the coin, a possible new molecular mechanism of decline/loss of function leading to a deficit of thyroid hormones formation.openUlianich L.; Mirra P.; Garbi C.; Cali G.; Conza D.; Treglia A.S.; Miraglia A.; Punzi D.; Miele C.; Raciti G.A.; Beguinot F.; Consiglio E.; Di Jeso B.Ulianich, L.; Mirra, P.; Garbi, C.; Cali, G.; Conza, D.; Treglia, A. S.; Miraglia, A.; Punzi, D.; Miele, C.; Raciti, G. A.; Beguinot, F.; Consiglio, E.; Di Jeso, B
    corecore