130 research outputs found

    Source apportionment and Elemental Composition of Atmospheric total Suspended Particulates (TSP) Over the Red Sea Coast of Saudi Arabia

    Get PDF
    This work presents a comprehensive study on concentrations and elemental composition of total suspended atmospheric particulates for a semi-urban site on the Red Sea coast, and on-board a research vessel, which collected off-shore samples along the Red Sea. We conducted one of the most extended measurement campaigns of atmospheric particulates ever for the region, with continuous measurements over 27 months. The overall mean concentrations (± st. dev.) of TSP were 125 ± 197 µg m−3 for the permanent semi-urban site, and 108 ± 193 µg m−3 for the off-shore mobile site. The region is frequently severely impacted by both localised and widespread dust storms, which on occasion, can increase atmospheric particulate concentrations to levels above mg m−3 (> 1000 µg m−3). Median concentrations were not as variable between seasons, indicating a stable, permanent presence of atmospheric particulates independent of the time of year. The primary chemical elements contributing to particulate mass were Na, Ca, S, Al and Fe. We employed Positive Matrix Factorisation (EPA PMF v5.0.14) to identify different major sources of particulates, which were crustal, marine, fuel oil combustion/secondary sulphate and mixed anthropogenic. The crustal source was characterised by tracers Al, Fe, K, Mg and Sn, and was present to some extent in the other identified sources due to the permanent presence of dust particles in the atmosphere. The fuel oil combustion/secondary sulphate source was identifiable by the almost exclusive presence of S, and to a lesser extent V, emitted from oil combustion as primary emissions and also secondary sulphate formation following the release of S to the atmosphere. A mixed anthropogenic source was characterised by Zn, Ni, Cr, Cu and Pb, emitted from traffic, industry, power generation and water desalination. This study highlights that the natural sources of particulates in this desert region give rise to frequent episodes of extremely poor air quality, and this problem is compounded by significant emissions of anthropogenic pollution, which has an impact across the entire Red Sea basin. Further stringent measures should be adopted to improve air quality across the region and prevent long-term damage to the health of the local population and ecosystems.En prens

    Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean

    Get PDF
    8 pages, 3 figures, 2 tables, supplementary material http://dx.doi.org/10.3389/fmicb.2015.01566Volatile and semi-volatile gas-phase organic carbon (GOC) is a largely neglected component of the global carbon cycle, with poorly resolved pools and fluxes of natural and anthropogenic GOC in the biosphere. Substantial amounts of atmospheric GOC are exchanged with the surface ocean, and subsequent utilization of specific GOC compounds by surface ocean microbial communities has been demonstrated. Yet, the final fate of the bulk of the atmospheric GOC entering the surface ocean is unknown. Our data show experimental evidence of efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic, the Arctic Ocean and the Mediterranean Sea. We estimate that between 2 and 27% of the prokaryotic carbon demand was supported by GOC with a major fraction of GOC inputs being consumed within the mixed layer. The role of the atmosphere as a key vector of organic carbon subsidizing marine microbial metabolism is a novel link yet to be incorporated into the microbial ecology of the surface ocean as well as into the global carbon budgetThis is a contribution to projects RODA (CTM2004-06842-CO3-02), and ATOS (POL2006-00550/CTM) projects, funded by the Spanish Ministry of Science and Innovation and project THRESHOLDS funded by the 6 Framework Programme of the European Union. JA was supported by a “Ramón y Cajal” research fellowship from the Spanish Government.Peer Reviewe

    Airborne Prokaryote and Virus Abundance Over the Red Sea

    Get PDF
    Aeolian dust exerts a considerable influence on atmospheric and oceanic conditions negatively impacting human health, particularly in arid and semi-arid regions like Saudi Arabia. Aeolian dust is often characterized by its mineral and chemical composition; however, there is a microbiological component of natural aerosols that has received comparatively little attention. Moreover, the amount of materials suspended in the atmosphere is highly variable from day to day. Thus, understanding the variability of atmospheric dust loads and suspended microbes throughout the year is essential to clarify the possible effects of dust on the Red Sea ecosystem. Here, we present the first estimates of dust and microbial loads at a coastal site on the Red Sea over a 2-year period, supplemented with measurements from dust samples collected along the Red Sea basin in offshore waters. Weekly average dust loads from a coastal site on the Red Sea ranged from 4.6 to 646.11 μg m−3, while the abundance of airborne prokaryotic cells and viral-like particles (VLPs) ranged from 77,967 to 1,203,792 cells m−3 and from 69,615 to 3,104,758 particles m−3, respectively. To the best of our knowledge, these are the first estimates of airborne microbial abundance in this region. The elevated concentrations of resuspended dust particles and suspended microbes found in the air indicate that airborne microbes may potentially have a large impact on human health and on the Red Sea ecosystem.En prens

    Corrigendum: Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean

    Get PDF
    We found an implementation error in the calculation of the deposition velocity (vd) which, in turn, affected all the estimated vd-depending parameters (deposition flux, residence time, and traveled distance by microorganisms). Deposition fluxes are now somewhat lower than previously estimated, resulting in residence times and traveled distances longer than those previously estimated. In addition, the spray fluxes were calculated using a spray generation function (dF/dr0) valid for droplets of radii between 0.5 and 12 μm proposed by Blanchard (1963) and Gathman (1982) as corrected by Andreas et al. (1995). However, in the calculation of dF/dr0, we exceeded this valid range of radii given that we included droplets with radii from 0.2 μm according to the small size of some microbial cells. Thus, a different formulation of dF/dr0, developed by Gong (2003), is now used for the estimation of spray fluxes of microbes, which is valid even for small droplets from a radius of 0.07 μm. Below, we offer a new corrected version of the paragraphs affected by corrections along the text. In addition, we show corrected versions of Figure 1 (forward trajectories according residence times), Figure 3 (deposition velocity values), Figure 5 (spray and deposition fluxes), Figure 6 (Net fluxes), and Table 1. The authors apologize for the errors in the estimates reported in the original manuscript. These corrections only affect the magnitude of some of the reported variables and even though they do not change the scientific conclusions of the article they are reported here for accuracy and reproducibility.En prens

    Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica)

    Get PDF
    Bacterial endophytes are crucial for the survival of many terrestrial plants, but little is known about the presence and importance of bacterial endophytes of marine plants. We conducted a survey of the endophytic bacterial community of the long-living Mediterranean marine angiosperm Posidonia oceanica in surface-sterilized tissues (roots, rhizomes, and leaves) by Denaturing Gradient Gel Electrophoresis (DGGE). A total of 26 Posidonia oceanica meadows around the Balearic Islands were sampled, and the band patterns obtained for each meadow were compared for the three sampled tissues. Endophytic bacterial sequences were detected in most of the samples analyzed. A total of 34 OTUs (Operational Taxonomic Units) were detected. The main OTUs of endophytic bacteria present in P. oceanica tissues belonged primarily to Proteobacteria (α, γ, and δ subclasses) and Bacteroidetes. The OTUs found in roots significantly differed from those of rhizomes and leaves. Moreover, some OTUs were found to be associated to each type of tissue. Bipartite network analysis revealed differences in the bacterial endophyte communities present on different islands. The results of this study provide a pioneering step toward the characterization of the endophytic bacterial community associated with tissues of a marine angiosperm and reveal the presence of bacterial endophytes that differed among locations and tissue types

    Effectiveness of acute geriatric units on functional decline, living at home, and case fatality among older patients admitted to hospital for acute medical disorders: meta-analysis

    Get PDF
    Objective To assess the effectiveness of acute geriatric units compared with conventional care units in adults aged 65 or more admitted to hospital for acute medical disorders

    Response to Comment on >dilution limits dissolved organic carbon utilization in the deep ocean>

    Get PDF
    Our recent finding that dilution limits dissolved organic carbon (DOC) utilization in the deep ocean has been criticized based on the common misconception that lability equates to rapid and complete utilization. Even when considering the redefinition of recalcitrant DOC recently proposed by Jiao et al., the dilution hypothesis best explains our experimental observations.This is a contribution to the MALASPINA Expedition 2010 project, funded by the CONSOLIDER-Ingenio 2010 program of the Spanish Ministry of Economy and Competitiveness (ref. CSD2008-00077)Peer Reviewe

    Enhanced Viral Activity in the Surface Microlayer of the Arctic and Antarctic Oceans

    Get PDF
    The ocean surface microlayer (SML), with physicochemical characteristics different from those of subsurface waters (SSW), results in dense and active viral and microbial communities that may favor virus–host interactions. Conversely, wind speed and/or UV radiation could adversely affect virus infection. Furthermore, in polar regions, organic and inorganic nutrient inputs from melting ice may increase microbial activity in the SML. Since the role of viruses in the microbial food web of the SML is poorly understood in polar oceans, we aimed to study the impact of viruses on prokaryotic communities in the SML and in the SSW in Arctic and Antarctic waters. We hypothesized that a higher viral activity in the SML than in the SSW in both polar systems would be observed. We measured viral and prokaryote abundances, virus-mediated mortality on prokaryotes, heterotrophic and phototrophic nanoflagellate abundance, and environmental factors. In both polar zones, we found small differences in environmental factors between the SML and the SSW. In contrast, despite the adverse effect of wind, viral and prokaryote abundances and virus-mediated mortality on prokaryotes were higher in the SML than in the SSW. As a consequence, the higher carbon flux released by lysed cells in the SML than in the SSW would increase the pool of dissolved organic carbon (DOC) and be rapidly used by other prokaryotes to grow (the viral shunt). Thus, our results suggest that viral activity greatly contributes to the functioning of the microbial food web in the SML, which could influence the biogeochemical cycles of the water columnEn prensa

    Consequences of UV-enhanced community respiration for plankton metabolic balance

    Get PDF
    The net community production (NCP) of plankton communities affects their role as sources or sinks of atmospheric CO2. Most estimates of NCP have been made by enclosing communities in bottles, generally glass borosilicate, that remove ultraviolet (UV)B and part of UVA wavelengths. A series of experiments were conducted to test whether NCP values from communities incubated excluding UVB (+ part of UVA) radiation (i.e., in glass borosilicate) differ from those of communities receiving the full solar radiation spectrum (i.e., incubated with quartz bottles) and to explore the effect of UV radiation on the respiration rates and bacterial production in these communities. Plankton NCP tended to be 43% lower, on average, when the rates were measured under full solar radiation than when UVB (+ part of UVA) was removed. Dark respiration was significantly enhanced after exposure to the full solar spectrum for most communities, showing lower values when previously incubated in a light environment free of UVB (−50%) or in the dark (−62%). Bacterial production was inhibited by natural sunlight but increased, as observed for community respiration, when transferred to the dark. Communities previously exposed to full solar spectrum showed the greatest increase in bacterial production when allowed to recover in the dark. The net result of these responses were an increase in community respiration and decline in net community production over 24 h, indicating that UVB radiation plays a major role in the metabolic balance of the ocean's surface ecosystem
    corecore