17 research outputs found

    Isolation, Characterization and Lipid-Binding Properties of the Recalcitrant FtsA Division Protein from Escherichia coli

    Get PDF
    We have obtained milligram amounts of highly pure Escherichia coli division protein FtsA from inclusion bodies with an optimized purification method that, by overcoming the reluctance of FtsA to be purified, surmounts a bottleneck for the analysis of the molecular basis of FtsA function. Purified FtsA is folded, mostly monomeric and interacts with lipids. The apparent affinity of FtsA binding to the inner membrane is ten-fold higher than to phospholipids, suggesting that inner membrane proteins could modulate FtsA-membrane interactions. Binding of FtsA to lipids and membranes is insensitive to ionic strength, indicating that a net contribution of hydrophobic interactions is involved in the association of FtsA to lipid/membrane structures

    Production of (10S,11S)-(—)-epi-Pyriculol and Its HPLC Quantification in Liquid Cultures of Pyricularia grisea, a Potential Mycoherbicide for the Control of Buffelgrass (Cenchrus ciliaris)

    No full text
    (10S,11S)-(—)-epi-pyriculol is a phytotoxic metabolite produced by Pyricularia grisea, a fungus identified as a foliar pathogen on the invasive weed species buffelgrass (Cenchrus ciliaris) in North America. The effective control of buffelgrass has not yet been achieved, and there is a need to develop effective and green solutions. Herbicides based on natural products and the use of phytopathogenic organisms could provide the most suitable tools for the control of weeds such as buffelgrass. Thus, one of the most relevant points to study about potential suitable phytotoxins such as (10S,11S)-(—)-epi-pyriculol is its production on a large scale, either by isolation from fungal fermentations or by synthesis. For these purposes, rapid and sensitive methods for the quantification of (10S,11S)-(—)-epi-pyriculol in complex mixtures are required. In this study, a high-pressure liquid chromatography (HPLC) method for its quantification was developed and applied to organic extracts from twelve P. grisea isolates obtained from diseased buffelgrass leaves and grown in potato dextrose broth (PDB) liquid cultures. The analysis proved that the production of (10S,11S)-(—)-epi-pyriculol is fungal-isolate dependent and strongly correlated with phytotoxic activity, shown by the P. grisea organic extracts in a buffelgrass radicle elongation test. The HPLC method reported herein allowed us to select the best strain for the production of (10S,11S)-(—)-epi-pyriculol and could be useful for selecting the best cultural conditions for its mass production, providing a tool for the use of this promising metabolite as a new bioherbicide for the control of buffelgrass

    Structures and Biological Activities of Alkaloids Produced by Mushrooms, a Fungal Subgroup

    Get PDF
    Alkaloids are a wide family of basic N-containing natural products, whose research has revealed bioactive compounds of pharmacological interest. Studies on these compounds have focused more attention on those produced by plants, although other types of organisms have also been proven to synthesize bioactive alkaloids, such as animals, marine organisms, bacteria, and fungi. This review covers the findings of the last 20 years (2002–2022) related to the isolation, structures, and biological activities of the alkaloids produced by mushrooms, a fungal subgroup, and their potential to develop drugs and agrochemicals. In some cases, the synthesis of the reviewed compounds and structure−activity relationship studies have been described

    Insights into the Ecotoxicology of Radicinin and (10<i>S</i>,11<i>S</i>)-(—)-<i>epi</i>-Pyriculol, Fungal Metabolites with Potential Application for Buffelgrass (<i>Cenchrus ciliaris</i>) Biocontrol

    Get PDF
    Buffelgrass (Cenchrus ciliaris L.) is an invasive C4 perennial grass species that substantially reduces native plant diversity of the Sonoran Desert through fire promotion and resource competition. Broad-spectrum herbicides are essentially used for its control, but they have a negative environmental and ecological impact. Recently, phytotoxicity on C. ciliaris has been discovered for two metabolites produced in vitro by the phytopathogenic fungi Cochliobolus australiensis and Pyricularia grisea. They were identified as (10S,11S)-(—)-epi-pyriculol and radicinin and resulted in being potential candidates for the development of bioherbicides for buffelgrass biocontrol. They have already shown promising results, but their ecotoxicological profiles and degradability have been poorly investigated. In this study, ecotoxicological tests against representative organisms from aquatic ecosystems (Aliivibrio fischeri bacterium, Raphidocelis subcapitata alga, and Daphnia magna crustacean) revealed relatively low toxicity for these compounds, supporting further studies for their practical application. The stability of these metabolites in International Organization for Standardization (ISO) 8692:2012 culture medium under different temperatures and light conditions was also evaluated, revealing that 98.90% of radicinin degraded after 3 days in sunlight. Significant degradation percentages (59.51–73.82%) were also obtained at room temperature, 30 °C or under ultraviolet (254 nm) light exposure. On the other hand, (10S,11S)-epi-pyriculol showed more stability under all the aforementioned conditions (49.26–65.32%). The sunlight treatment was also shown to be most effective for the degradation of this metabolite. These results suggest that radicinin could provide rapid degradability when used in agrochemical formulations, whereas (10S,11S)-epi-pyriculol stands as a notably more stable compound

    Characterization of Conyza bonariensis Allelochemicals against Broomrape Weeds

    Get PDF
    The study of allelopathic activity of plants and the isolation and characterization of the responsible allelochemicals can lead to the development of environment friendly alternative approaches to weed control. Conyza species are invasive weeds that use allelopathic activity as part of a successful strategy to outcompete neighboring plants. Broomrape weeds are parasitic plants that use host-induced germination and the formation of a haustorium as strategies to infect host plants. The control of broomrape infection in most affected crops is limited or non-existing. In the current study, we investigated the allelopathic activity of Conyza bonariensis organic extracts in suicidal germination and radicle growth of four broomrape species (Orobanche crenata, Orobanche cumana, Orobanche minor and Phelipanche ramosa). A bioactivity-driven fractionation of Conyza bonariensis extracts led to the identification of two germination-inducing molecules and two growth-inhibitory compounds. The germination-inducing metabolites had species-specific activity being hispidulin active on seeds of O. cumana and methyl 4-hydroxybenzoate active in P. ramosa. The growth-inhibitory metabolites (4Z)-lachnophyllum lactone and (4Z,8Z)-matricaria lactone strongly inhibited the radicle growth of all parasitic weed species studied. Some structure-activity relationships were found as result of the study herein presented

    Alternaria alternata Isolated from Infected Pears (Pyrus communis) in Italy Produces Non-Host Toxins and Hydrolytic Enzymes as Infection Mechanisms and Exhibits Competitive Exclusion against Botrytis cinerea in Co-Infected Host Fruits

    No full text
    Alternaria alternata is one of the most devastating phytopathogenic fungi. This microorganism causes black spots in many fruits and vegetables worldwide, generating significant post-harvest losses. In this study, an A. alternata strain, isolated from infected pears (Pyrus communis) harvested in Italy, was characterized by focusing on its pathogenicity mechanisms and competitive exclusion in the presence of another pathogen, Botrytis cinerea. In in vitro assays, the fungus produces strong enzymatic activities such as amylase, xylanase, and cellulase, potentially involved during the infection. Moreover, it secretes four different toxins purified and identified as altertoxin I, alteichin, alternariol, and alternariol 4-methyl ether. Only alteichin generated necrotic lesions on host-variety pears, while all the compounds showed moderate to slight necrotic activity on non-host pears and other non-host fruit (lemon, Citrus limon), indicating they are non-host toxins. Interestingly, A. alternata has shown competitive exclusion to the competitor fungus Botrytis cinerea when co-inoculated in host and non-host pear fruits, inhibiting its growth by 70 and 65%, respectively, a result not observed in a preliminary characterization in a dual culture assay. Alteichin and alternariol 4-methyl ether tested against B. cinerea had the best inhibition activity, suggesting that the synergism of these toxins and enzymatic activities of A. alternata are probably involved in the competitive exclusion dynamics in host and non-host pear fruits

    Structure&minus;Activity Relationship (SAR) Study of trans-Cinnamic Acid and Derivatives on the Parasitic Weed Cuscuta campestris

    No full text
    Cuscuta campestris Yunck. is a parasitic weed responsible for severe yield losses in crops worldwide. The selective control of this weed is scarce due to the difficult application of methods that kill the parasite without negatively affecting the infected crop. trans-Cinnamic acid is secreted by plant roots naturally into the rhizosphere, playing allelopathic roles in plant&ndash;plant communities, although its activity in C. campestris has never been investigated. In the search for natural molecules with phytotoxic activity against parasitic weeds, this work hypothesized that trans-cinnamic acid could be active in inhibiting C. campestris growth and that a study of a series of analogs could reveal key structural features for its growth inhibition activity. In the present structure&ndash;activity relationship (SAR) study, we determined in vitro the inhibitory activity of trans-cinnamic acid and 24 analogs. The results showed that trans-cinnamic acid&rsquo;s growth inhibition of C. campestris seedlings is enhanced in eight of its derivatives, namely hydrocinnamic acid, 3-phenylpropionaldehyde, trans-cinnamaldehyde, trans-4-(trifluoromethyl)cinnamic acid, trans-3-chlorocinnamic acid, trans-4-chlorocinnamic acid, trans-4-bromocinnamic acid, and methyl trans-cinnamate. Among the derivatives studied, the methyl ester derivative of trans-cinnamic acid was the most active compound. The findings of this SAR study provide knowledge for the design of herbicidal treatments with enhanced activity against parasitic weeds

    Identification of Allelochemicals with Differential Modes of Phytotoxicity against Cuscuta campestris

    Get PDF
    Cuscuta campestris is a parasitic weed species with noxious effects in broadleaf crops worldwide. The control of Cuscuta in the majority of crops affected is limited or non-existing. We tested, for the first time, the effect of eighteen metabolites in in vitro-grown Cuscuta seedlings. We found that 2-benzoxazolinone, hydrocinnamic acid and pisatin caused the strongest inhibition of seedling growth. In addition to seedling growth, pisatin caused necrosis of the Cuscuta seedling, occurring mostly at the seedling shoot. Scopoletin and sesamol treatments caused toxicity, observed as a black staining, only at the Cuscuta root apices, while caffeic acid, ferulic acid and vanillic acid caused toxicity, observed as brown staining, in the root apices. The structure–activity relationships in four structural derivatives of 2-benzoxazolinone, and five structural derivatives of hydrocinnamic acid, were also studied. The identification of new herbicidal modes of action against Cuscuta is the first step in creating new alternatives to sustainable chemical control of parasitic weeds.This research was funded by the Spanish Agencia Estatal de Investigación (projects PID2020-114668RB-I00 and RYC-2015-18961) and by a CSIC-ALGOSUR research contract. The authors wish to express gratitude for the Ph.D. grant to Gabriele Soriano, funded by INPS (Istituto Nazionale Previdenza Sociale), and for the Galileo grant from Córdoba University-Diputación to Antonio Moreno-Robles.Peer reviewe
    corecore