7 research outputs found

    Aging and Hypertension – Independent or Intertwined White Matter Impairing Factors? Insights From the Quantitative Diffusion Tensor Imaging

    Get PDF
    Aging disrupts white matter integrity, and so does continuous elevated blood pressure that accompanies hypertension (HTN). Yet, our understanding of the interrelationship between these factors is still limited. The study aimed at evaluating patterns of changes in diffusion parameters (as assessed by quantitative diffusion fiber tracking – qDTI) following both aging, and hypertension, as well as the nature of their linkage. 146 participants took part in the study: the control group (N = 61) and the patients with hypertension (N = 85), and were divided into three age subgroups (25–47, 48–56, 57–71 years). qDTI was used to calculate the values of fractional anisotropy, mean, radial and axial diffusivity in 20 main tracts of the brain. The effects of factors (aging and hypertension) on diffusion parameters of tracts were tested with a two-way ANOVA. In the right hemisphere there was no clear effect of the HTN, nor an interaction between the factors, though some age-related effects were observed. Contrary, in the left hemisphere both aging and hypertension contributed to the white matter decline, following a functional pattern. In the projection pathways and the fornix, HTN and aging played part independent of each other, whereas in association fibers and the corpus callosum if the hypertension effect was significant, an interaction was observed. HTN patients manifested faster decline of diffusion parameters but also reached a plateau earlier, with highest between-group differences noted in the middle-aged subgroup. Healthy and hypertensive participants have different brain aging patterns. The HTN is associated with acceleration of white matter integrity decline, observed mainly in association fibers of the left hemisphere

    Editorial

    No full text

    Fine, hyperfine and Zeeman structures of levels of

    No full text
    The hyperfine and Zeeman structures of 14 lines of isotope 123Sb covering the UV-NIR spectral range have been measured. The experimental data have been used in order to reanalyse and revise Sb I energy levels. We named majority of them for the first time since they were previously labelled only by their energy values, without any term designations. In both cases of odd- and even-parity levels we took into consideration up to 7 interacting configurations; the set of fine structure parameters and the leading eigenvector percentages of levels as well as their calculated Landé-factors are given. Semi-empirical hfs parameter values extracted from experimental data were compared with ab initio results computed by the use of Cowan code

    The Role of Hydrogen Bonding in Paracetamol–Solvent and Paracetamol–Hydrogel Matrix Interactions

    No full text
    The photophysical and photochemical properties of antipyretic drug – paracetamol (PAR) and its two analogs with different substituents (acetanilide (ACT) and N-ethylaniline (NEA)) in 14 solvents of different polarity were investigated by the use of steady–state spectroscopic technique and quantum–chemical calculations. As expected, the results show that the spectroscopic behavior of PAR, ACT, and NEA is highly dependent on the nature of the solute–solvent interactions (non-specific (dipole-dipole) and specific (hydrogen bonding)). To characterize these interactions, the multiparameter regression analysis proposed by Catalán was used. In order to obtain a deeper insight into the electronic and optical properties of the studied molecules, the difference of the dipole moments of a molecule in the ground and excited state were determined using the theory proposed by Lippert, Mataga, McRae, Bakhshiev, Bilot, and Kawski. Additionally, the influence of the solute polarizability on the determined dipole moments was discussed. The results of the solvatochromic studies were related to the observations of the release kinetics of PAR, ACT, and NEA from polyurethane hydrogels. The release kinetics was analyzed using the Korsmayer-Peppas and Hopfenberg models. Finally, the influence of the functional groups of the investigated compounds on the release time from the hydrogel matrix was analyzed
    corecore