1,023 research outputs found

    Tuning of metal-insulator transition of two-dimensional electrons at parylene/SrTiO3_3 interface by electric field

    Full text link
    Electrostatic carrier doping using a field-effect-transistor structure is an intriguing approach to explore electronic phases by critical control of carrier concentration. We demonstrate the reversible control of the insulator-metal transition (IMT) in a two dimensional (2D) electron gas at the interface of insulating SrTiO3_3 single crystals. Superconductivity was observed in a limited number of devices doped far beyond the IMT, which may imply the presence of 2D metal-superconductor transition. This realization of a two-dimensional metallic state on the most widely-used perovskite oxide is the best manifestation of the potential of oxide electronics

    Nanoscale state-of-charge heterogeneities within polycrystalline nickel-rich layered oxide cathode materials

    Get PDF
    Nickel-rich cathodes (LiNixMnyCo1-x-yO2, x > 0.6) permit higher energy in lithium-ion rechargeable batteries but suffer from accelerated degradation at potentials above 4.1 V versus Li/Li+. Here, we present a proof-of-concept in situ pouch cell and methodology for correlative 2D synchrotron transmission X-ray microscopy with 3D lab-based micro-CT. XANES analysis of the TXM data enables tracking of Ni edge energy within and between the polycrystalline NMC811 particles embedded in the operating electrode through its initial delithiation. By using edge energy as a proxy, state-of-charge heterogeneities can be tracked at the nanoscale, revealing the role of cracked particles as potential nucleation points for failure and highlighting the challenges in achieving uniform (de-)lithiation. We propose, in future work, to leverage the pouch cell design presented here for longitudinal TXM-XANES studies of nickel-rich cathodes across multiple cycles and operating variables and investigate the effect of dopants and microstructural optimization in mitigating degradation

    A Dilatometric Study of Graphite Electrodes during Cycling with X-ray Computed Tomography

    Get PDF
    Graphite is the most commonly used anode material in commercial lithium-ion batteries (LiBs). Understanding the mechanisms driving the dimensional changes of graphite can pave the way to methods for inhibiting degradation pathways and possibly predict electrochemical performance loss. In this study, correlative microscopy tools were used alongside electrochemical dilatometry (ECD) to provide new insights into the dimensional changes during galvanostatic cycling. X-ray computed tomography (CT) provided a morphological perspective of the cycled electrode so that the effects of dilation and contraction on effective diffusivity and electrode pore phase volume fraction could be examined. During the first cycle, the graphite electrode underwent thickness changes close to 9% after lithiation and, moreover, it did not return to its initial thickness after subsequent delithiation. The irreversible dilation increased over subsequent cycles. It is suggested the primary reason for this dilation is electrode delamination. This is supported by the finding that the electrode porosity remained mostly unchanged during cycling, as revealed by X-ray CT

    Breakdown of Scaling in the Nonequilibrium Critical Dynamics of the Two-Dimensional XY Model

    Full text link
    The approach to equilibrium, from a nonequilibrium initial state, in a system at its critical point is usually described by a scaling theory with a single growing length scale, ξ(t)t1/z\xi(t) \sim t^{1/z}, where z is the dynamic exponent that governs the equilibrium dynamics. We show that, for the 2D XY model, the rate of approach to equilibrium depends on the initial condition. In particular, ξ(t)t1/2\xi(t) \sim t^{1/2} if no free vortices are present in the initial state, while ξ(t)(t/lnt)1/2\xi(t) \sim (t/\ln t)^{1/2} if free vortices are present.Comment: 4 pages, 3 figure

    Correlative electrochemical acoustic time-of-flight spectroscopy and X-ray imaging to monitor the performance of single-crystal and polycrystalline NMC811/Gr lithium-ion batteries

    Get PDF
    LiNixMnyCozO2 (NMC) electrodes typically consist of anisotropic single-crystal primary particles aggregated to form polycrystalline secondary particles. Electrodes composed of polycrystalline NMC particles have a comparatively high gravimetric capacity and good rate capabilities but do not perform as well as single crystal equivalents in terms of volumetric energy density and cycling stability. This has prompted research into well-dispersed single-crystalline NMC products as an alternative solution for high-energy-density batteries. Here, for the first time known to the authors, electrochemical acoustic time-of-flight (EA-ToF) spectroscopy has been shown to be effective in distinguishing between Li-ion batteries composed of either single-crystal NMC811 (SC-NMC811) or polycrystalline NMC811 (PC-NMC811) electrodes. Cells composed of PC-NMC811 electrodes had a higher degree of gas evolution compared to cells containing SC-NMC811 electrodes. Cells composed of PC-NMC811 electrodes also underwent larger changes in the acoustic signal's time-of-flight (ToF) during constant current cycling at a range of C-rates indicating expansion, fracture or dislocation of the reflective interfaces inside the cell. In addition, X-ray computed tomography (X-ray CT) has been used to confirm significant morphological differences between SC-NMC811 electrodes and PC-NMC811 electrodes including the electrode's particle size distribution (PSD) that is suggested to have an effect on acoustic signal interaction with these electrode interfaces

    The dietary impact of the Norman Conquest: A multiproxy archaeological investigation of Oxford, UK

    Get PDF
    Archaeology has yet to capitalise on the opportunities offered by bioarchaeological approaches to examine the impact of the 11th-century AD Norman Conquest of England. This study utilises an integrated multiproxy analytical approach to identify and explain changes and continuities in diet and foodways between the 10th and 13th centuries in the city of Oxford, UK. The integration of organic residue analysis of ceramics, carbon (δ13C) and nitrogen (δ15N) isotope analysis of human and animal bones, incremental analysis of δ13C and δ15N from human tooth dentine and palaeopathological analysis of human skeletal remains has revealed a broad pattern of increasing intensification and marketisation across various areas of economic practice, with a much lesser and more short-term impact of the Conquest on everyday lifestyles than is suggested by documentary sources. Nonetheless, isotope data indicate short-term periods of instability, particularly food insecurity, did impact individuals. Evidence of preferences for certain foodstuffs and cooking techniques documented among the elite classes were also observed among lower-status townspeople, suggesting that Anglo-Norman fashions could be adopted across the social spectrum. This study demonstrates the potential for future archaeological research to generate more nuanced understanding of the cultural impact of the Norman Conquest of England, while showcasing a method which can be used to elucidate the undocumented, everyday implications of other large-scale political events on non-elites

    Residual Stress, Mechanical Behavior and Electrical Properties of Cu/Nb Thin-Film Multilayers

    Full text link
    Effect of compositional wavelength (modulation) on residual stress, electrical resistivities and mechanical properties of Cu/Nb thin-film multilayers sputtered onto single-crystal Si substrates, was evaluated. Electrical resistivities were measured down to 4 K using a standard 4-point probe. Differential specimen curvature was used to determine residual stress, and a microprobe was used to obtain hardness and elastic modulus. Profilometry, ion-beam analysis and TEM were used. Hardness of the Cu-Nb multilayers increased with decreasing compositional wavelength so that the layered structures had hardness values in excess of either constituent and the hardness predicted by the rule of mixtures. A peak in net residual compressive stress of the multilayers was observed at a compositional wavelength of 100 nm. No resistivity plateau was observed within the composition wavelength range studied

    The role of ion solvation in lithium mediated nitrogen reduction

    Get PDF
    Since its verification in 2019, there have been numerous high-profile papers reporting improved efficiency of lithium-mediated electrochemical nitrogen reduction to make ammonia. However, the literature lacks any coherent investigation systematically linking bulk electrolyte properties to electrochemical performance and Solid Electrolyte Interphase (SEI) properties. In this study, we discover that the salt concentration has a remarkable effect on electrolyte stability: at concentrations of 0.6 M LiClO4 and above the electrode potential is stable for at least 12 hours at an applied current density of −2 mA cm−2 at ambient temperature and pressure. Conversely, at the lower concentrations explored in prior studies, the potential required to maintain a given N2 reduction current increased by 8 V within a period of 1 hour under the same conditions. The behaviour is linked more coordination of the salt anion and cation with increasing salt concentration in the electrolyte observed via Raman spectroscopy. Time of flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy reveal a more inorganic, and therefore more stable, SEI layer is formed with increasing salt concentration. A drop in faradaic efficiency for nitrogen reduction is seen at concentrations higher than 0.6 M LiClO4, which is attributed to a combination of a decrease in nitrogen solubility and diffusivity as well as increased SEI conductivity as measured by electrochemical impedance spectroscopy

    Interests, trust and security in US-Jordanian nuclear relations

    Get PDF
    This article explores the relationship between Jordan and the United States (US) in the field of nuclear energy cooperation. Since 2010 the Jordanian government has accelerated its plans for a nuclear energy program and has engaged with multiple partners around the world in order to agree terms for cooperation in technology exchange, monitoring, and the construction of infrastructure. Bilateral negotiations between the US and Jordan for a "123" nuclear cooperation agreement were underway by early 2008, but were suspended in 2011 without an agreement being reached. Jordanian nuclear energy policy has been spurred by energy security considerations (as it currently imports 97 percent of its energy needs) and the discovery of up to 120,000 tonnes of uranium ore in Jordan. At the same time, the US is primarily interested in management of nuclear technology proliferation. This work considers the perceptions of self and other in Jordanian and US policymaking in order to understand why bilateral cooperation has not materialized and what this means for nuclear proliferation in Jordan. This study finds that the US–Jordanian negotiations have been impeded by contradictory objectives and perceptions, and a "123" agreement is not likely in the short to medium term, but that development of Jordan’s nuclear energy program will likely continue regardless
    corecore