169 research outputs found

    Dehydropeptide supramolecular hydrogels and nanostructures as potential peptidomimetic biomedical materials

    Get PDF
    Supramolecular peptide hydrogels are gaining increased attention, owing to their potential in a variety of biomedical applications. Their physical properties are similar to those of the extracellular matrix (ECM), which is key to their applications in the cell culture of specialized cells, tissue engineering, skin regeneration, and wound healing. The structure of these hydrogels usually consists of a di- or tripeptide capped on the N-terminus with a hydrophobic aromatic group, such as Fmoc or naphthalene. Although these peptide conjugates can offer advantages over other types of gelators such as cross-linked polymers, they usually possess the limitation of being particularly sensitive to proteolysis by endogenous proteases. One of the strategies reported that can overcome this barrier is to use a peptidomimetic strategy, in which natural amino acids are switched for non-proteinogenic analogues, such as D-amino acids, ÎČ-amino acids, or dehydroamino acids. Such peptides usually possess much greater resistance to enzymatic hydrolysis. Peptides containing dehydroamino acids, i.e., dehydropeptides, are particularly interesting, as the presence of the double bond also introduces a conformational restraint to the peptide backbone, resulting in (often predictable) changes to the secondary structure of the peptide. This review focuses on peptide hydrogels and related nanostructures, where α,ÎČ-didehydro-α-amino acids have been successfully incorporated into the structure of peptide hydrogelators, and the resulting properties are discussed in terms of their potential biomedical applications. Where appropriate, their properties are compared with those of the corresponding peptide hydrogelator composed of canonical amino acids. In a wider context, we consider the presence of dehydroamino acids in natural compounds and medicinally important compounds as well as their limitations, and we consider some of the synthetic strategies for obtaining dehydropeptides. Finally, we consider the future direction for this research area.This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding of CQUM (UID/QUI/00686/2019). FCT, FEDER, PORTUGAL2020 and COMPETE2020 are also acknowledged for funding under research project PTDC/QUI-QOR/29015/2017 (POCI-01-0145-FEDER-029015)

    Hydrogels and nanostructures formed from ciprofloxacin–peptide conjugates

    Get PDF
    Ciprofloxacin is a broad-spectrum fluoroquinolone antibiotic that possesses potent activity against both Gram-positive and Gram-negative bacteria and is used to treat many infections. Despite its widespread use, ciprofloxacin is associated with side effects, which might be reduced by improving its pharmacokinetic properties. The chemical structure of ciprofloxacin is the source of some of its limitations, which include: (1) Poor membrane permeability due to lipophobicity caused by the presence of polar groups; and (2) poor transportation and absorption due to poor water solubility caused by the flat aromatic structure. Previous methods for improving the pharmacokinetic properties of ciprofloxacin have involved the synthesis of conjugates. Issues related to poor membrane permeability, transportation and absorption of drugs can also be improved by employing nanocarriers and nanomaterials. Encapsulation within nanocarriers allows targeted drug delivery and reduced side effects as lower doses of the drug can be administered. Nanocarriers that can be used for this purpose include nanoparticles and hydrogels. Our research group is interested in supramolecular hydrogels as drug delivery systems. Short amphiphilic peptides are often able to form hydrogels through self-assembly. This present work describes the synthesis of a ciprofloxacin–dehydropeptide conjugate with the aim of forming hydrogels and related nanostructures to be used for the ‘self-delivery’ of antibacterial compounds. We assessed the hydrogelation ability, antibacterial activity, and pharmacokinetic properties. TEM microscopy revealed nanotubes and nanospheres. The conjugate was unable to form hydrogels alone but was able to form hydrogels as the major component of a co-gel with another peptide gelator. Although the conjugate retained antibacterial activity at 400 ”M, activity diminished at lower concentrations. Thus, future work should focus on more hydrolysable pro-drug versions of the conjugate or versions where the peptide is connected at an alternate position.This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding of CQUM (UID/QUI/00686/2019). FCT, FEDER, PORTUGAL2020, and COMPETE2020 are also acknowledged for funding under research project PTDC/QUI-QOR/29015/2017 (POCI-01-0145-FEDER-029015)

    Evaluation of a model photo-caged dehydropeptide as a stimuli-responsive supramolecular hydrogel

    Get PDF
    Short peptides capped on the N-terminus with aromatic groups are often able to form supramolecular hydrogels, via self-assembly, in aqueous media. The rheological properties of these readily tunable hydrogels resemble those of the extracellular matrix (ECM) and therefore have potential for various biological applications, such as tissue engineering, biosensors, 3D bioprinting, drug delivery systems and wound dressings. We herein report a new photo-responsive supramolecular hydrogel based on a “caged” dehydropeptide (CNB-Phe-ΔPhe-OH 2), containing a photo-cleavable carboxy-2-nitrobenzyl (CNB) group. We have characterized this hydrogel using a range of techniques. Irradiation with UV light cleaves the pendant aromatic capping group, to liberate the corresponding uncaged model dehydropeptide (H-Phe-ΔPhe-OH 3), a process which was investigated by 1H NMR and HPLC studies. Crucially, this cleavage of the capping group is accompanied by dissolution of the hydrogel (studied visually and by fluorescence spectroscopy), as the delicate balance of intramolecular interactions within the hydrogel structure is disrupted. Hydrogels which can be disassembled non-invasively with temporal and spatial control have great potential for specialized on-demand drug release systems, wound dressing materials and various topical treatments. Both 2 and 3 were found to be non-cytotoxic to the human keratinocyte cell line, HaCaT. The UV-responsive hydrogel system reported here is complementary to previously reported related UV-responsive systems, which are generally composed of peptides formed from canonical amino acids, which are susceptible to enzymatic proteolysis in vivo. This system is based on a dehydrodipeptide structure which is known to confer proteolytic resistance. We have investigated the ability of the photo-activated system to accelerate the release of the antibiotic, ciprofloxacin, as well as some other small model drug compounds. We have also conducted some initial studies towards skin-related applications. Moreover, this model system could potentially be adapted for on-demand “self-delivery”, through the uncaging of known biologically active dehydrodipeptides.This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding of CQUM (UID/QUI/00686/2019) and of IPC (UID/CTM/50025/2019). L.H. acknowledges funding from the FCT Investigator Programme through grant IF/00606/2014. FCT, FEDER, PORTUGAL2020 and COMPETE2020 are also acknowledged for funding under research project PTDC/QUI-QOR/29015/2017 (POCI-01-0145-FEDER-029015)

    Biological evaluation of naproxen–dehydrodipeptide conjugates with self-hydrogelation capacity as dual LOX/COX inhibitors

    Get PDF
    The use of peptide–drug conjugates is emerging as a powerful strategy for targeted drug delivery. Previously, we have found that peptides conjugated to a non-steroidal anti-inflammatory drug (NSAID), more specifically naproxen–dehydrodipeptide conjugates, readily form nanostructured fibrilar supramolecular hydrogels. These hydrogels were revealed as efficacious nano-carriers for drug delivery applications. Moreover, the incorporation of superparamagnetic iron oxide nanoparticles (SPIONs) rendered the hydrogels responsive to external magnetic fields, undergoing gel-to-solution phase transition upon remote magnetic excitation. Thus, magnetic dehydrodipeptide-based hydrogels may find interesting applications as responsive Magnetic Resonance Imaging (MRI) contrast agents and for magnetic hyperthermia-triggered drug-release applications. Supramolecular hydrogels where the hydrogelator molecule is endowed with intrinsic pharmacological properties can potentially fulfill a dual function in drug delivery systems as (passive) nanocariers for incorporated drugs and as active drugs themselves. In this present study, we investigated the pharmacological activities of a panel of naproxen–dehydrodipeptide conjugates, previously studied for their hydrogelation ability and as nanocarriers for drug-delivery applications. A focused library of dehydrodipeptides, containing N-terminal canonical amino acids (Phe, Tyr, Trp, Ala, Asp, Lys, Met) N-capped with naproxen and linked to a C-terminal dehydroaminoacid (ΔPhe, ΔAbu), were evaluated for their anti-inflammatory and anti-cancer activities, as well as for their cytotoxicity to non-cancer cells, using a variety of enzymatic and cellular assays. All compounds except one were able to significantly inhibit lipoxygenase (LOX) enzyme at a similar level to naproxen. One of the compounds 4 was able to inhibit the cyclooxygenase-2 (COX-2) to a greater extent than naproxen, without inhibiting cyclooxygenase-1 (COX-1), and therefore is a potential lead in the search for selective COX-2 inhibitors. This hydrogelator is a potential candidate for dual COX/LOX inhibition as an optimised strategy for treating inflammatory conditions.This work is funded by National Funds through FCT-Portuguese Foundation for Science and Technology under the Project cand CQ/UM UID/QUI/00686/2013 and UID/QUI/0686/2016. The NMR spectrometers are part of the National NMR Network (PTNMR) and are partially supported by Infrastructure Project No 022161 (co-financed by FEDER through COMPETE 2020, POCI and PORL and FCT through PIDDAC).This work is funded by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT-Portuguese Foundation for Science and Technology under the Project UID/CTM/50025/2013 and UIDB/50006/2020. We thank Vera Alexandra de Macedo Ribeiro for isolation of the 26S proteasome subunit. We acknowledge the precious advice of Tarsila Castro on the docking studies. For computing resources:”Search-ON2: Revitalization of HPC infrastructure of UMinho, (NORTE-07-0162-FEDER-000086), co-funded by the North Portugal Regional Operational Programme (ON.2-O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF)

    Staphylococcus aureus from patients with chronic rhinosinusitis show minimal genetic association between polyp and non-polyp phenotypes

    Get PDF
    Background: Staphylococcus aureus has a high prevalence in chronic rhinosinusitis (CRS) patients and is suggested to play a more etiopathogenic role in CRS patients with nasal polyps (CRSwNP), a severe form of the CRS spectrum with poorer surgical outcomes. We performed a microbial genome-wide association study (mGWAS) to investigate whether S. aureus isolates from CRS patients have particular genetic markers associated with CRS with nasal polyps (CRSwNP) or CRS without nasal polyps (CRSsNP). Methods: Whole genome sequencing was performed on S. aureus isolates collected from 28 CRSsNP and 30 CRSwNP patients. A mGWAS approach was employed using large-scale comparative genomics to identify genetic variation within our dataset. Results: Considerable genetic variation was observed, with >90,000 single nucleotide polymorphisms (SNPs) sites identified. There was little correlation with CRS subtype based on SNPs and Insertion/Delection (Indels). One indel was found to significantly correlate with CRSwNP and occurred in the promoter region of a bacitracin transport system ATP-binding protein. Additionally, two variants of the highly variable superantigen-like (SSL) proteins were found to significantly correlate with each CRS phenotype. No significant association with other virulence or antibiotic resistance genes were observed, consistent with previous studies. Conclusion: To our knowledge this study is the first to use mGWAS to investigate the contribution of microbial genetic variation to CRS presentations. Utilising the most comprehensive genome-wide analysis methods available, our results suggest that CRS phenotype may be influenced by genetic factors other than specific virulence mechanisms within the S. aureus genome

    Aryl-capped lysine-dehydroamino acid dipeptide supergelators as potential drug release systems

    Get PDF
    Employing amino acids and peptides as molecular building blocks provides unique opportunities for generating supramolecular hydrogels, owing to their inherent biological origin, bioactivity, biocompatibility, and biodegradability. However, they can suffer from proteolytic degradation. Short peptides (<8 amino acids) attached to an aromatic capping group are particularly attractive alternatives for minimalistic low molecular weight hydrogelators. Peptides with low critical gelation concentrations (CGCs) are especially desirable, as the low weight percentage required for gelation makes them more cost-effective and reduces toxicity. In this work, three dehydrodipeptides were studied for their self-assembly properties. The results showed that all three dehydrodipeptides can form self-standing hydrogels with very low critical gelation concentrations (0.050.20 wt%) using a pH trigger. Hydrogels of all three dehydrodipeptides were characterised by scanning tunnelling emission microscopy (STEM), rheology, fluorescence spectroscopy, and circular dichroism (CD) spectroscopy. Molecular modelling was performed to probe the structural patterns and interactions. The cytotoxicity of the new compounds was tested using human keratinocytes (HaCaT cell line). In general, the results suggest that all three compounds are non-cytotoxic, although one of the peptides shows a small impact on cell viability. In sustained release assays, the effect of the charge of the model drug compounds on the rate of cargo release from the hydrogel network was evaluated. The hydrogels provide a sustained release of methyl orange (anionic) and ciprofloxacin (neutral), while methylene blue (cationic) was retained by the network.This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding of CQUM (UID/QUI/00686/2019), IPC (UIDP/CTM/05256/2020 and UIDB/05256/2020) and REQUIMTE/LAQV (UIDB/50006/2020). L.H. acknowledges grant CEECINST/00156/2018. FCT, FEDER, PORTUGAL2020 and COMPETE2020 are also acknowl edged for funding under research project PTDC/QUI-QOR/29015/2017 (POCI-01-0145-FEDER 029015). TGC thanks FCT under the scope of the strategic funding of UIDB/04469/2020 unit, and LABBELS—Associate Laboratory in Biotechnology, Bioengineering and Microelectromechanical Systems, LA/P/0029/2020.info:eu-repo/semantics/publishedVersio

    Synthesis and biological activity of α-glucosyl C24:0 and C20:2 ceramides

    Get PDF
    a-Glucosyl ceramides 4 and 5 have been synthesised and evaluated for their ability to stimulate the activation and expansion of human iNKT cells. The key challenge in the synthesis of both target molecules was the stereoselective synthesis of the a-glycosidic linkage. Of the methods examined, glycosylation using per-TMS-protected glucosyl iodide 16 was completely a-selective and provided gram quantities of amine 11, from which a-glucosyl ceramides 4 and 5 were obtained by N-acylation. a-GlcCer 4, containing a C24 saturated acyl chain, stimulated a marked proliferation and expansion of human circulating iNKT cells in short-term cultures. a-GlcCer 5, which contains a C20 11,14-cis-diene acyl chain (C20:2),induced extremely similar levels of iNKT cell activation and expansion

    Bolaamphiphilic Bis-Dehydropeptide hydrogels as potential drug release systems

    Get PDF
    The self-assembly of nanometric structures from molecular building blocks is an effective way to make new functional materials for biological and technological applications. In this work, four symmetrical bolaamphiphiles based on dehydrodipeptides (phenylalanyldehydrophenylalanine and tyrosyldehydrophenylalanine) linked through phenyl or naphthyl linkers (terephthalic acid and 2,6-naphthalenedicarboxylic acid) were prepared, and their self-assembly properties were studied. The results showed that all compounds, with the exception of the bolaamphiphile of tyrosyldehydrophenylalanine and 2,6-naphthalene dicarboxylic acid, gave self-standing hydrogels with critical gelation concentrations of 0.3 wt % and 0.4 wt %, using a pH trigger. The self-assembly of these hydrogelators was investigated using STEM microscopy, which revealed a network of entangled fibers. According to rheology, the dehydrodipeptide bolaamphiphilic hydrogelators are viscoelastic materials with an elastic modulus G' that falls in the range of native tissue (0.37 kPa brain-4.5 kPa cartilage). In viability and proliferation studies, it was found that these compounds were non-toxic toward the human keratinocyte cell line, HaCaT. In sustained release assays, we studied the effects of the charge present on model drug compounds on the rate of cargo release from the hydrogel networks. Methylene blue (MB), methyl orange (MO), and ciprofloxacin were chosen as cationic, anionic, and overall neutral cargo, respectively. These studies have shown that the hydrogels provide a sustained release of methyl orange and ciprofloxacin, while methylene blue is retained by the hydrogel network.Portugal2020, Compete2020, FEDER. PTDC/QUI-QOR/29015/2017. UIDB/04650/2020. UIDB/50006/2020. UID/QUI/00686/2019. UID/CTM/50025/2019. SFRH/BD/144017/201
    • 

    corecore