421 research outputs found

    Serum vitamin D levels, diabetes and cardio-metabolic risk factors in Aboriginal and Torres Strait Islander Australians

    Get PDF
    Assesses levels of serum 25(OH)D in Aboriginal and Torres Strait Islander Australians and explores relationships between 25(OH)D and cardio-metabolic risk factors and diabetes. Abstract Background: Low levels of serum 25 – hydroxy vitamin D (25(OH)D), have been associated with development of type 2 diabetes and cardiovascular disease (CVD); however there are limited data on serum 25(OH)D in Indigenous Australians, a population at high risk for both diabetes and CVD. We aimed to assess levels of serum 25(OH)D in Aboriginal and Torres Strait Islander Australians and to explore relationships between 25(OH)D and cardio-metabolic risk factors and diabetes. Methods: 592 Aboriginal and/or Torres Strait Islander Australian participants of The eGFR (estimated glomerular filtration rate) Study, a cross-sectional analysis of a cohort study performed in 2007 – 2011, from urban and remote centres within communities, primary care and tertiary hospitals across Northern Territory, Far North Queensland and Western Australia. Assessment of serum 25(OH)D, cardio-metabolic risk factors (central obesity, diabetes, hypertension, history of cardiovascular disease, current smoker, low HDL-cholesterol), and diabetes (by history or HbA1c ≥ 6.5%) was performed. Associations were explored between 25(OH)D and outcome measures of diabetes and number of cardio-metabolic risk factors. Results: The median (IQR) serum 25(OH)D was 60 (45 – 77) nmol/L, 31% had 25(OH)D <50 nmol/L. For participants with 25(OH)D < 50 vs ≥ 50 nmol/L, cardio-metabolic risk profile differed for: diabetes (54%, 36% p < 0.001), past history of cardiovascular disease (16%, 9%, p = 0.014), waist-hip ratio (0.98, 0.92, p < 0.001), urine albumin-creatinine ratio (2.7, 1.5 mg/mmol, p < 0.001). The OR (95% CI) for diabetes was 2.02 (1.03 – 3.95) for people in the lowest vs highest tertiles of 25(OH)D (<53 vs >72 nmol/L, respectively) after adjusting for known cardio-metabolic risk factors. Conclusion: The percentage of 25(OH)D levels <50 nmol/L was high among Aboriginal and Torres Strait Islander Australians from Northern and Central Australia. Low 25(OH)D level was associated with adverse cardio-metabolic risk profile and was independently associated with diabetes. These findings require exploration in longitudinal studies

    Reduced Amino Acid Specificity of Mammalian Tyrosyl-tRNA Synthetase is Associated with Elevated Mistranslation of Tyr Codons

    Get PDF
    Quality control operates at different steps in translation to limit errors to approximately one mistranslated codon per 10,000 codons during mRNA-directed protein synthesis. Recent studies have suggested that error rates may actually vary considerably during translation under different growth conditions. Here we examined the misincorporation of Phe at Tyr codons during synthesis of a recombinant antibody produced in tyrosine-limited Chinese hamster ovary (CHO) cells. Tyr to Phe replacements were previously found to occur throughout the antibody at a rate of up to 0.7% irrespective of the identity or context of the Tyr codon translated. Despite this comparatively high mistranslation rate, no significant change in cellular viability was observed. Monitoring of Phe and Tyr levels revealed that changes in error rates correlated with changes in amino acid pools, suggesting that mischarging of tRNATyr with noncognate Phe by tyrosyl-tRNA synthetase was responsible for mistranslation. Steady-state kinetic analyses of CHO cytoplasmic tyrosyl-tRNA synthetase revealed a 25-fold lower specificity for Tyr over Phe as compared with previously characterized bacterial enzymes, consistent with the observed increase in translation error rates during tyrosine limitation. Functional comparisons of mammalian and bacterial tyrosyl-tRNA synthetase revealed key differences at residues responsible for amino acid recognition, highlighting differences in evolutionary constraints for translation quality control

    Assessing the value of BMI and aerobic capacity as surrogate markers for the severity of left ventricular diastolic dysfunction in patients with type 2 diabetes who are obese

    Get PDF
    Left ventricular diastolic dysfunction (LVDD) is one of the earliest signs for abnormal cardiac function in patients with type 2 diabetes (T2DM). It is important to explore the risk factors that will assist in identifying the severity of the LVDD in this population. We examined the influences of fitness and fatness on the level of left ventricular (LV) impairment in patients with T2DM. Twenty-five patients (age: 64.0 ± 2.5 years, body mass index [BMI] = 36.0 ± 1.5 kg/m2, mean ± standard error of measurement) with T2DM and preserved systolic function, but impaired diastolic function, mitral valve (MV) E/e\u27, participated in the study. LV function was assessed using a stress echocardiograph, aerobic power was assessed with a sign- and symptom-limited graded exercise test, and the fatness level was assessed using Dual-energy X-ray absorptiometry and BMI. Patients in the higher 50% of BMI had higher lateral and septal MV E/e\u27 (∼34% and ∼25%, respectively, both P < 0.001), compared to those in the lower 50% of BMI, with no difference in LV ejection fraction (LVEF) (P > 0.05). In addition, a higher BMI correlated with a higher lateral (r = 0.62, P < 0.001) and septal (r = 0.56, P < 0.01) E/e\u27. There was no such relationship for VO2peak. BMI and VO2peak were not correlated with LV systolic function (ejection fraction). In individuals with T2DM and diastolic dysfunction, a higher BMI was associated with worsening diastolic function independent of their aerobic capacity. The data provide a simple and practical approach for clinicians to assist in the early identification and diagnostics of functional changes in the heart diastolic function in this population

    Glucose-loading reduces bone remodeling in women and osteoblast function in vitro

    Get PDF
    Aging is associated with a reduction in osteoblast life span and the volume of bone formed by each basic multicellular unit. Each time bone is resorbed, less is deposited producing microstructural deterioration. Aging is also associated with insulin resistance and hyperglycemia, either of which may cause, or be the result of, a decline in undercarboxylated osteocalcin (ucOC), a protein produced by osteoblasts that increases insulin sensitivity. We examined whether glucose-loading reduces bone remodeling and ucOC in vivo and osteoblast function in vitro, and so compromises bone formation. We administered an oral glucose tolerance test (OGTT) to 18 pre and postmenopausal, nondiabetic women at rest and following exercise and measured serum levels of bone remodeling markers (BRMs) and ucOC. We also assessed whether increasing glucose concentrations with or without insulin reduced survival and activity of cultured human osteoblasts. Glucose-loading at rest and following exercise reduced BRMs in pre and postmenopausal women and reduced ucOC in postmenopausal women. Higher glucose correlated negatively, whereas insulin correlated positively, with baseline BRMs and ucOC. The increase in serum glucose following resting OGTT was associated with the reduction in bone formation markers. D-glucose (>10 mmol L-1) increased osteoblast apoptosis, reduced cell activity and osteocalcin expression compared with 5 mmol L-1. Insulin had a protective effect on these parameters. Collagen expression in vitro was not affected in this time course. In conclusion, glucose exposure reduces BRMs in women and exercise failed to attenuate this suppression effect. The suppressive effect of glucose on BRMs may be due to impaired osteoblast work and longevity. Whether glucose influences material composition and microstructure remains to be determined

    A Single Dose of Prednisolone as a Modulator of Undercarboxylated Osteocalcin and Insulin Sensitivity Post-Exercise in Healthy Young Men: A Study Protocol

    Get PDF
    Background: Undercarboxylated osteocalcin (ucOC) increases insulin sensitivity in mice. In humans, data are supportive, but the studies are mostly cross-sectional. Exercise increases whole-body insulin sensitivity, in part via ucOC, while acute glucocorticoid treatment suppresses ucOC in humans and mice.Objectives: A single dose of prednisolone reduces the rise in ucOC produced by exercise, which partly accounts for the failed increase in insulin sensitivity following exercise.Methods: Healthy young men (n=12) aged 18 to 40 years will be recruited. Initial assessments will include analysis of fasting blood, body composition, aerobic power (VO2peak), and peak heart rate. Participants will then be randomly allocated, double-blind, to a single dose of 20 mg of prednisolone or placebo. The two experimental trials will involve 30 minutes of interval exercise (90%-95% peak heart rate), followed by 3 hours of recovery and 2 hours of euglycaemic- hyperinsulinaemic clamp (insulin clamp). Seven muscle biopsies and blood samples will be obtained at rest, following exercise and post-insulin clamps.Results: The study is funded by the National Heart Foundation of Australia and Victoria University. Enrollment has already commenced and data collection will be completed in 2016.Conclusion: If the hypothesis is confirmed, the study will provide novel insights into the potential role of ucOC in insulin sensitivity in human subjects and will elucidate pathways involved in exercise-induced insulin sensitivity

    Association between intrarenal arterial resistance and diastolic dysfunction in type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In comparison to the well established changes in compliance that occur at the large vessel level in diabetes, much less is known about the changes in compliance of the cardiovascular system at the end-organ level. The aim of this study was therefore to examine whether there was a correlation between resistance of the intrarenal arteries of the kidney and compliance of the left ventricle, as estimated by measurements of diastolic function, in subjects with type 2 diabetes.</p> <p>Methods</p> <p>We studied 167 unselected clinic patients with type 2 diabetes with a kidney duplex scan to estimate intrarenal vascular resistance, i.e. the resistance index (RI = peak systolic velocity-minimum diastolic velocity/peak systolic velocity) and a transthoracic echocardiogram (TTE) employing tissue doppler studies to document diastolic and systolic ventricular function.</p> <p>Results</p> <p>Renal RI was significantly higher in subjects with diastolic dysfunction (0.72 ± 0.05) when compared with those who had a normal TTE examination (0.66 ± 0.06, p < 0.01). Renal RI values were correlated with markers of diastolic dysfunction including the E/Vp ratio (r = 0.41, p < 0.001), left atrial area (r = 0.36, p < 0.001), the E/A ratio (r = 0.36, p < 0.001) and the E/E' ratio (r = 0.31, p < 0.001). These associations were independent of systolic function, hypertension, the presence and severity of chronic kidney disease, the use of renin-angiotensin inhibitors and other potentially confounding variables.</p> <p>Conclusion</p> <p>Increasing vascular resistance of the intrarenal arteries was associated with markers of diastolic dysfunction in subjects with type 2 diabetes. These findings are consistent with the hypothesis that vascular and cardiac stiffening in diabetes are manifestations of common pathophysiological mechanisms.</p

    Modulation of the Cellular Expression of Circulating Advanced Glycation End-Product Receptors in Type 2 Diabetic Nephropathy

    Get PDF
    Background. Advanced glycation end-products (AGEs) and their receptors are prominent contributors to diabetic kidney disease. Methods. Flow cytometry was used to measure the predictive capacity for kidney impairment of the AGE receptors RAGE, AGE-R1, and AGE-R3 on peripheral blood mononuclear cells (PBMCs) in experimental models of type 2 diabetes (T2DM) fed varied AGE containing diets and in obese type 2 diabetic and control human subjects. Results. Diets high in AGE content fed to diabetic mice decreased cell surface RAGE on PBMCs and in type 2 diabetic patients with renal impairment (RI). All diabetic mice had elevated Albumin excretion rates (AERs), and high AGE fed dbdb mice had declining Glomerular filtration rate (GFR). Cell surface AGE-R1 expression was also decreased by high AGE diets and with diabetes in dbdb mice and in humans with RI. PBMC expression of AGE R3 was decreased in diabetic dbdb mice or with a low AGE diet. Conclusions. The most predictive PBMC profile for renal disease associated with T2DM was an increase in the cell surface expression of AGE-R1, in the context of a decrease in membranous RAGE expression in humans, which warrants further investigation as a biomarker for progressive DN in larger patient cohorts

    Failure of functional imaging with gallium-68-DOTA-D-Phe1-Tyr3-octreotide positron emission tomography to localize the site of ectopic adrenocorticotropic hormone secretion: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The diagnostic efficacy of biochemical and imaging modalities for investigating the causes of Cushing's syndrome are limited. We report a case demonstrating the limitations of these modalities, especially the inability of functional imaging to help localize the site of ectopic adrenocorticotropic hormone secretion.</p> <p>Case presentation</p> <p>A 37-year-old Arabian woman presented with 12 months of progressive Cushing's syndrome-like symptoms. Biochemical evaluation confirmed adrenocorticotropic hormone -dependent Cushing's syndrome. However, the anatomical site of her excess adrenocorticotropic hormone secretion was not clearly delineated by further investigations. Magnetic resonance imaging of our patient's pituitary gland failed to demonstrate the presence of an adenoma. Spiral computed tomography of her chest only revealed the presence of a non-specific 7 mm lesion in her left inferobasal lung segment. Functional imaging, including a positron emission tomography scan using 18-fluorodeoxyglucose and gallium-68-DOTA-D-Phe1-Tyr3-octreotide, also failed to show increased metabolic activity in the lung lesion or in her pituitary gland. Our patient was commenced on medical treatment with ketoconazole and metyrapone to control the clinical features associated with her excess cortisol secretion. Despite initial normalization of her urinary free cortisol excretion rate, levels began to rise eight months after commencement of medical treatment. Repeated imaging of her pituitary gland, chest and pelvis again failed to clearly localize a source of her excess adrenocorticotropic hormone secretion. The bronchial nodule was stable in size on serial imaging and repeatedly reported as having a nonspecific appearance of a small granuloma or lymph node. We re-explored the treatment options and endorsed our patient's favored choice of resection of the bronchial nodule, especially given that her symptoms of cortisol excess were difficult to control and refractory. Subsequently, our patient had the bronchial nodule resected. The histological appearance of the lesion was consistent with that of a carcinoid tumor and immunohistochemical analysis revealed that the tumor stained strongly positive for adrenocorticotropic hormone. Furthermore, removal of the lung lesion resulted in a normalization of our patient's 24-hour urinary free cortisol excretion rate and resolution of her symptoms and signs of hypercortisolemia.</p> <p>Conclusion</p> <p>This case report demonstrates the complexities and challenges in diagnosing the causes of adrenocorticotropic hormone -dependent Cushing's syndrome. Functional imaging may not always localize the site of ectopic adrenocorticotropic hormone secretion.</p
    corecore