35 research outputs found

    The Human Genomic Melting Map

    Get PDF
    In a living cell, the antiparallel double-stranded helix of DNA is a dynamically changing structure. The structure relates to interactions between and within the DNA strands, and the array of other macromolecules that constitutes functional chromatin. It is only through its changing conformations that DNA can organize and structure a large number of cellular functions. In particular, DNA must locally uncoil, or melt, and become single-stranded for DNA replication, repair, recombination, and transcription to occur. It has previously been shown that this melting occurs cooperatively, whereby several base pairs act in concert to generate melting bubbles, and in this way constitute a domain that behaves as a unit with respect to local DNA single-strandedness. We have applied a melting map calculation to the complete human genome, which provides information about the propensities of forming local bubbles determined from the whole sequence, and present a first report on its basic features, the extent of cooperativity, and correlations to various physical and biological features of the human genome. Globally, the melting map covaries very strongly with GC content. Most importantly, however, cooperativity of DNA denaturation causes this correlation to be weaker at resolutions fewer than 500 bps. This is also the resolution level at which most structural and biological processes occur, signifying the importance of the informational content inherent in the genomic melting map. The human DNA melting map may be further explored at http://meltmap.uio.no

    Demographic routes to variability and regulation in bird populations

    Get PDF
    There is large interspecific variation in the magnitude of population fluctuations, even among closely related species. The factors generating this variation are not well understood, primarily because of the challenges of separating the relative impact of variation in population size from fluctuations in the environment. Here, we show using demographic data from 13 bird populations that magnitudes of fluctuations in population size are mainly driven by stochastic fluctuations in the environment. Regulation towards an equilibrium population size occurs through density-dependent mortality. At small population sizes, population dynamics are primarily driven by environment-driven variation in recruitment, whereas close to the carrying capacity K, variation in population growth is more strongly influenced by density-dependent mortality of both juveniles and adults. Our results provide evidence for the hypothesis proposed by Lack that population fluctuations in birds arise from temporal variation in the difference between density-independent recruitment and density-dependent mortality during the non-breeding season

    Effects of acute substance use and pre-injury substance abuse on traumatic brain injury severity in adults admitted to a trauma centre

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aims of this study were to describe the occurrence of substance use at the time of injury and pre-injury substance abuse in patients with moderate-to-severe traumatic brain injury (TBI). Effects of acute substance use and pre-injury substance abuse on TBI severity were also investigated.</p> <p>Methods</p> <p>A prospective study of 111 patients, aged 16-55 years, injured from May 2005 to May 2007 and hospitalised at the Trauma Referral Centre in Eastern Norway with acute TBI (Glasgow Coma Scale 3-12). Based on structural brain damages shown on a computed tomography (CT) scan, TBI severity was defined by modified Marshall classification as less severe (score <3) and more severe (score ≥3). Clinical definition of substance use (alcohol and/or other psychoactive substances) was applied when hospital admission records reflected blood alcohol levels or a positive drug screen, or when a physician verified influence by examining the patient. Pre-injury substance abuse (alcohol and drug problems) was screened by using the CAGE questionnaire.</p> <p>Results</p> <p>Forty-seven percent of patients were positive for substance use on admission to hospital. Significant pre-injury substance abuse was reported by 26% of patients. Substance use at the time of injury was more frequent in the less severe group (p = 0.01). The frequency of pre-injury substance abuse was higher in the more severe group (30% vs. 23%). In a logistic regression model, acute substance use at time of injury tended to decrease the probability of more severe intracranial injury, but the effect was not statistically significant after adjusting for age, gender, education, cause of injury and substance abuse, OR = 0.39; 95% CI 0.11-1.35, p = 0.14. Patients with positive screens for pre-injury substance abuse (CAGE ≥2) were more likely to have more severe TBI in the adjusted regression analyses, OR = 4.05; 95% CI 1.10-15.64, p = 0.04.</p> <p>Conclusions</p> <p>Acute <b>s</b>ubstance use was more frequent in patients with less severe TBI caused by low-energy events such as falls, violence and sport accidents. Pre-injury substance abuse increased the probability of more severe TBI caused by high-energy trauma such as motor vehicle accidents and falls from higher levels. Preventive efforts to reduce substance consumption and abuse in at-risk populations are needed.</p

    The Swiss Preschoolers’ health study (SPLASHY): objectives and design of a prospective multi-site cohort study assessing psychological and physiological health in young children

    Full text link
    corecore