20 research outputs found

    Quantitation of Oleuropein and Related Phenolics in Cured Spanish-Style Green, California-Style Black Ripe, and Greek-Style Natural Fermentation Olives.

    No full text
    Oleuropein, ligstroside, and related hydrolysis products are key contributors to olive bitterness, and several of these phenolics are implicated in the prevention of lifestyle age-related diseases. While table olive processing methods are designed to reduce oleuropein, the impact of processing on ligstroside and related hydrolysis products (e.g., oleacein, oleocanthal, hydroxytyrosol glucoside, ligstroside aglycone, and oleuropein aglycone) is relatively unknown. Herein, levels of these compounds were measured in Spanish-style green (SP), Californian-style black ripe (CA), and Greek-style natural fermentation (GK) olives using rapid ultrahigh-performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS). GK olives had the highest concentration of all compounds measured, with the exception of oleocanthal, which was highest in SP olives (0.081 mg kg-1 wet weight (w.wt)). CA olives had the lowest levels of most compounds measured, including ligstroside (0.115 mg kg-1 w.wt) and oleuropein (0.974 mg kg-1 w.wt). Hydroxytyrosol was the predominate compound in all three styles of commercial olives, with similar concentrations observed for GK and SP olives (134.329 and 133.685 mg kg-1 w.wt, respectively) and significantly lower concentrations observed for CA olives (19.981 mg kg-1 w.wt)

    The Influence of pH and Sodium Hydroxide Exposure Time on Glucosamine and Acrylamide Levels in California-Style Black Ripe Olives.

    No full text
    Acrylic acid, N-acetyl-glucosamine and glucosamine were investigated for their role in the formation of acrylamide in California-style black ripe olives [CBROs]. Levels of acrylic acid and glucosamine are reported for the first time in fresh (333.50 ± 21.88 and 243.59 ± 10.06 nmol/g, respectively) and in brine-stored olives (184.50 ± 6.02 and 165.88 ± 11.51 nmol/g, respectively). Acrylamide levels significantly increased when acrylic acid (35.2%), N-acetyl-glucosamine (29.9%), and glucosamine (124.0%) were added to olives prior to sterilization. However, isotope studies indicate these compounds do not contribute carbon and/or nitrogen atoms to acrylamide. The base-catalyzed degradation of glucosamine is demonstrated in olive pulp and a strong correlation (r2 = 0.9513) between glucosamine in olives before sterilization and acrylamide formed in processed CBROs is observed. Treatment with sodium hydroxide (pH > 12) significantly reduces acrylamide levels over 1 to 5 d without impacting olive fruit texture

    Ultrahigh-Pressure Liquid Chromatography Triple-Quadrupole Tandem Mass Spectrometry Quantitation of Polyphenols and Secoiridoids in California-Style Black Ripe Olives and Dry Salt-Cured Olives

    No full text
    The chemical composition of finished table olive products is influenced by the olive variety and the processing method used to debitter or cure table olives. Herein, a rapid ultrahigh-pressure liquid chromatography triple-quadrupole tandem mass spectrometry method, using dynamic multiple reaction monitoring, was developed for the quantitation of 12 predominant phenolic and secoiridoid compounds in olive fruit, including hydroxytyrosol, oleuropein, hydroxytyrosol-4-<i>O</i>-glucoside, luteolin-7-<i>O</i>-glucoside, rutin, verbascoside, oleoside-11-methyl ester, 2,6-dimethoxy-<i>p</i>-benzoquinone, phenolic acids (chlorogenic and <i>o</i>-coumaric acids), oleuropein aglycone, and ligstroside aglycone. Levels of these compounds were measured in fresh and California-style black ripe processed Manzanilla olives and two dry salt-cured olive varieties (Mission from California and Throuba Thassos from Greece). Results indicate that the variety and debittering processing method have strong impact on the profile of phenolic and secoiridoid compounds in table olives. The dry salt-cured olives contained higher amounts of most compounds studied, especially oleuropein (1459.5 ± 100.1 μg/g), whereas California-style black ripe olives had a significant reduction or loss of these bioactive compounds (e.g., oleuropein level at 36.7 ± 3.1 μg/g)
    corecore