62 research outputs found

    Physical Methods for the Preparation of Hybrid Nanocomposite Polymer Latex Particles

    Full text link
    In this chapter, we will highlight conceptual physical approaches towards the fabrication of nanocomposite polymer latexes in which each individual latex particle contains one or more "hard" nanoparticles, such as clays, silicates, titanates, or other metal(oxides). By "physical approaches" we mean that the "hard" nanoparticles are added as pre-existing entities, and are not synthesized in situ as part of the nanocomposite polymer latex fabrication process. We will narrow our discussion to focus on physical methods that rely on the assembly of nanoparticles onto the latex particles after the latex particles have been formed, or its reciprocal analogue, the adhesion of polymer onto an inorganic nanoparticle. First, will discuss the phenomenon of heterocoagulation and its various driving forces, such as electrostatic interactions, the hydrophobic effect, and secondary molecular interactions. We will then address methods that involve assembly of nanoparticles onto or around the more liquid precursors (i.e., swollen/growing latex particles or monomer droplets). We will focus on the phenomenon of Pickering stabilization. We will then discuss features of particle interaction with soft interfaces, and see how the adhesion of particles onto emulsion droplets can be applied in suspension, miniemulsion, and emulsion polymerization. Finally, we will very briefly mention some interesting methods that make use of interface-driven templating for making well-defined assembled clusters and supracolloidal structures

    Functional interactions between KCNE1 C-terminus and the KCNQ1 channel.

    Get PDF
    The KCNE1 gene product (minK protein) associates with the cardiac KvLQT1 potassium channel (encoded by KCNQ1) to create the cardiac slowly activating delayed rectifier, I(Ks). Mutations throughout both genes are linked to the hereditary cardiac arrhythmias in the Long QT Syndrome (LQTS). KCNE1 exerts its specific regulation of KCNQ1 activation via interactions between membrane-spanning segments of the two proteins. Less detailed attention has been focused on the role of the KCNE1 C-terminus in regulating channel behavior. We analyzed the effects of an LQT5 point mutation (D76N) and the truncation of the entire C-terminus (Delta70) on channel regulation, assembly and interaction. Both mutations significantly shifted voltage dependence of activation in the depolarizing direction and decreased I(Ks) current density. They also accelerated rates of channel deactivation but notably, did not affect activation kinetics. Truncation of the C-terminus reduced the apparent affinity of KCNE1 for KCNQ1, resulting in impaired channel formation and presentation of KCNQ1/KCNE1 complexes to the surface. Complete saturation of KCNQ1 channels with KCNE1-Delta70 could be achieved by relative over-expression of the KCNE subunit. Rate-dependent facilitation of K(+) conductance, a key property of I(Ks) that enables action potential shortening at higher heart rates, was defective for both KCNE1 C-terminal mutations, and may contribute to the clinical phenotype of arrhythmias triggered by heart rate elevations during exercise in LQTS mutations. These results support several roles for KCNE1 C-terminus interaction with KCNQ1: regulation of channel assembly, open-state destabilization, and kinetics of channel deactivation

    The Effects of the A Matter of Balance Program on Falls and Physical Risk of Falls, Tampa, Florida, 2013

    No full text
    Extracted text; Introduction This study investigated the effects of the A Matter of Balance (MOB) program on falls and physical risk factors of falling among community-dwelling older adults living in Tampa, Florida, in 2013. Methods A total of 110 adults (52 MOB, 58 comparison) were enrolled in this prospective cohort study. Data on falls, physical risk of falling, and other known risk factors of falling were collected at baseline and at the end of the program. Multivariate analysis of covariance with repeated measures and logistic regressions were used to investigate the effects of this program. Results Participants in the MOB group were less likely to have had a fall and had significant improvements in their physical risk of falling compared with adults in the comparison group. No significant effects of the MOB program on recurrent falls or the number of falls reported were found. Conclusion This study contributes to our understanding of the MOB program and its effectiveness in reducing falls and the physical risk of falling among older adults. The findings support extended use of this program to reduce falls and physical risk of falling among older adults

    Biophysical characteristics of KCNE1 mutants.

    No full text
    <p>N = 6.</p><p>Abbreviations: V<sub>h</sub> voltage at which half the channels are activated; ΔG(C→O) change in Gibbs free energy for the closed and open states during channel activation; ΔE<sub>a</sub>(O→C) change in activation energy for the transition from open to closed states relative to wild-type KCNE1. (ND, not done).</p
    • …
    corecore