3,306 research outputs found
A Renormalization group approach for highly anisotropic 2D Fermion systems: application to coupled Hubbard chains
I apply a two-step density-matrix renormalization group method to the
anisotropic two-dimensional Hubbard model. As a prelude to this study, I
compare the numerical results to the exact one for the tight-binding model. I
find a ground-state energy which agrees with the exact value up to four digits
for systems as large as . I then apply the method to the
interacting case. I find that for strong Hubbard interaction, the ground-state
is dominated by magnetic correlations.
These correlations are robust even in the presence of strong frustration.
Interchain pair tunneling is negligible in the singlet and triplet channels and
it is not enhanced by frustration. For weak Hubbard couplings, interchain
non-local singlet pair tunneling is enhanced and magnetic correlations are
strongly reduced. This suggests a possible superconductive ground state.Comment: 8 pages, 11 figures, expanded version of cond-mat/060856
Recommended from our members
Getting the best outcomes from epilepsy surgery.
Neurosurgery is an underutilized treatment that can potentially cure drug-refractory epilepsy. Careful, multidisciplinary presurgical evaluation is vital for selecting patients and to ensure optimal outcomes. Advances in neuroimaging have improved diagnosis and guided surgical intervention. Invasive electroencephalography allows the evaluation of complex patients who would otherwise not be candidates for neurosurgery. We review the current state of the assessment and selection of patients and consider established and novel surgical procedures and associated outcome data. We aim to dispel myths that may inhibit physicians from referring and patients from considering neurosurgical intervention for drug-refractory focal epilepsies. Ann Neurol 2018;83:676-690
Application of Quantum-Markov Open System Models to Human Cognition and Decision
Markov processes, such as random walk models, have been successfully used by cognitive and neural scientists to model human choice behavior and decision time for over 50 years. Recently, quantum walk models have been introduced as an alternative way to model the dynamics of human choice and confidence across time. Empirical evidence points to the need for both types of processes, and open system models provide a way to incorporate them both into a single process. However, some of the constraints required by open system models present challenges for achieving this goal. The purpose of this article is to address these challenges and formulate open system models that have good potential to make important advancements in cognitive science
Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel
We theoretically investigate the process of coupling cold atoms into the core
of a hollow-core photonic-crystal optical fiber using a blue-detuned
Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam
to couple the atoms, the blue-detuned hollow-beam can confine cold atoms to the
darkest regions of the beam thereby minimizing shifts in the internal states
and making the guide highly robust to heating effects. This single optical beam
is used as both a funnel and guide to maximize the number of atoms into the
fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical
trap (MOT) above a vertically-oriented optical fiber. We observe a
gravito-optical trapping effect for atoms with high orbital momentum around the
trap axis, which prevents atoms from coupling to the fiber: these atoms lack
the kinetic energy to escape the potential and are thus trapped in the laser
funnel indefinitely. We find that by reducing the dipolar force to the point at
which the trapping effect just vanishes, it is possible to optimize the
coupling of atoms into the fiber. Our simulations predict that by using a
low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a
20-{\mu}m radius core hollow-fiber it is possible to couple 11% of the atoms
from a MOT 9 mm away from the fiber. When MOT is positioned further away,
coupling efficiencies over 50% can be achieved with larger core fibers.Comment: 11 pages, 12 figures, 1 tabl
Endothelial preconditioning by transient oxidative stress reduces inflammatory responses of cultured endothelial cells to TNF-α
Brief episodes of ischemia can render an organ resistant to subsequent severe ischemia. This âischemic preconditioningâ is ascribed to various mechanisms, including oxidative stress. We investigated whether preconditioning exists on an endothelial level. Human umbilical vein endothelial cells (HUVECs) were transiently confronted with oxidative stress (1 mM H2O2, 5 min). Adhesion molecules ICAM-1 and E-selectin and release of cytokines IL-6 and IL-8 to subsequent stimulation with TNF-α (2.5 ng/ml, 4 h) were measured (flow cytometry and immunoassay), as were nuclear translocation of the transcription factor NFkB (Western blotting, confocal microscopy) and redox status of HUVECs (quantification of glutathione by HPLC). TNF-α elevated IL-6 in the cell supernatant from 8.8 ± 1 to 41 ± 3 pg/ml and IL-8 from 0.5 ± 0.03 to 3 ± 0.2 ng/ml. ICAM-1 was increased threefold and E-selectin rose eightfold. Oxidative stress (decrease of glutathione by 50%) reduced post-TNF-α levels of IL-6 to 14 ± 3 and IL-8 to 1 ± 0.2; the rise of ICAM-1 was completely blocked and E-selectin was only doubled. The anti-inflammatory effects of preconditioning via oxidative stress were paralleled by reduction of the translocation of NFkB on stimulation with TNF-α, and antagonized by the intracellular radical scavenger N-acetylcysteine. âAnti-inflammatory preconditioningâ of endothelial cells by oxidative stress may account for the inhibitory effects of preconditioning on leukocyte adhesion in vivo
Evolution of oxygen isotopic composition in the inner solar nebula
Changes in the chemical and isotopic composition of the solar nebula with
time are reflected in the properties of different constituents that are
preserved in chondritic meteorites. CR carbonaceous chondrites are among the
most primitive of all chondrite types and must have preserved solar nebula
records largely unchanged. We have analyzed the oxygen and magnesium isotopes
in a range of the CR constituents of different formation temperatures and ages,
including refractory inclusions and chondrules of various types. The results
provide new constraints on the time variation of the oxygen isotopic
composition of the inner (<5 AU) solar nebula - the region where refractory
inclusions and chondrules most likely formed. A chronology based on the decay
of short-lived 26Al (t1/2 ~ 0.73 Ma) indicates that the inner solar nebula gas
was 16O-rich when refractory inclusions formed, but less than 0.8 Ma later, gas
in the inner solar nebula became 16O-poor and this state persisted at least
until CR chondrules formed ~1-2 Myr later. We suggest that the inner solar
nebula became 16O-poor because meter-size icy bodies, which were enriched in
17,18O due to isotopic self-shielding during the ultraviolet photo dissociation
of CO in the protosolar molecular cloud or protoplanetary disk, agglomerated
outside the snowline, drifted rapidly towards the Sun, and evaporated at the
snowline. This led to significant enrichment in 16O-depleted water, which then
spread through the inner solar system. Astronomical studies of the spatial
and/or temporal variations of water abundance in protoplanetary disks may
clarify these processes.Comment: 27 pages, 5 figure
In the Supreme Court of the United States Barbara Grutter, Petitioner, v. Lee Bollinger, et al., Respondents. On Writ of Certiorari to the United States Court of Appeals for the Sixth Circuit
Brief of the University of Michigan Asian Pacific American Law Students Association, the University of Michigan Black Law Students\u27 Alliance, the University of Michigan Latino Law Students Association, and the University of Michigan Native American Law Students Association as Amici Curiae in Support of Respondent
In the Supreme Court of the United States Barbara Grutter, Petitioner, v. Lee Bollinger, et al., Respondents. On Writ of Certiorari to the United States Court of Appeals for the Sixth Circuit
Brief of the University of Michigan Asian Pacific American Law Students Association, the University of Michigan Black Law Students\u27 Alliance, the University of Michigan Latino Law Students Association, and the University of Michigan Native American Law Students Association as Amici Curiae in Support of Respondent
Recommended from our members
A Phenotype of Early Infancy Predicts Reactivity of the Amygdala in Male Adults
One of the central questions that has occupied those disciplines concerned with human development is the nature of continuities and discontinuities from birth to maturity. The amygdala plays a central role in the processing of novelty and emotion in the brain. While there is considerable variability among individuals in the reactivity of the amygdala to novel and emotional stimuli, the origin of these individual differences is not well understood. Four month old infants called high reactive (HR) demonstrate a distinctive pattern of vigorous motor activity and crying to specific unfamiliar visual, auditory, and olfactory stimuli in the laboratory. Low-reactive infants show the complementary pattern. Here we demonstrate that the HR infant phenotype predicts greater amygdalar reactivity to novel faces almost two decades later in adults. A prediction of individual differences in brain function at maturity can be made on the basis of a single behavioural assessment made in the laboratory at four months of age. This is the earliest known human behavioural phenotype that predicts individual differences in patterns of neural activity at maturity. These temperamental differences rooted in infancy may be relevant to understanding individual differences in vulnerability and resilience to clinical psychiatric disorder. Males who were HR infants showed particularly high-levels of reactivity to novel faces in the amygdala that distinguished them as adults from all other sex/temperament subgroups, suggesting that their amygdala is particularly prone to engagement by unfamiliar faces. These findings underline the importance of taking gender into account when studying the developmental neurobiology of human temperament and anxiety disorders. The genetic study of behavioral and biologic intermediate phenotypes (or âendophenotypesâ) indexing anxiety-proneness offers an important alternative to examining phenotypes based on clinically-defined disorder. Because the HR phenotype is characterized by specific patterns of reactivity to elemental visual, olfactory, and auditory stimuli, well before complex social behaviors such as shyness or fearful interaction with strangers can be observed, it may be closer to underlying neurobiological mechanisms than behavioral profiles observed later in life. This possibility, together with the fact that environmental factors have less time to impact the four-month phenotype, suggests that this temperamental profile may be a fruitful target for high-risk genetic studies.Psycholog
- âŠ