65 research outputs found

    Analysis of renal diffusion-weighted imaging (DWI) using apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM) models

    Get PDF
    Analysis of renal diffusion-weighted imaging (DWI) data to derive markers of tissue properties requires careful consideration of the type, extent, and limitations of the acquired data. Alongside data quality and general suitability for quantitative analysis, choice of diffusion model, fitting algorithm, and processing steps can have consequences for the precision, accuracy, and reliability of derived diffusion parameters. Here we introduce and discuss important steps for diffusion-weighted image processing, and in particular give example analysis protocols and pseudo-code for analysis using the apparent diffusion coefficient (ADC) and intravoxel incoherent motion (IVIM) models. Following an overview of general principles, we provide details of optional steps, and steps for validation of results. Illustrative examples are provided, together with extensive notes discussing wider context of individual steps, and notes on potential pitfalls.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concepts and experimental procedure

    Extended T2-IVIM model for correction of TE dependence of pseudo-diffusion volume fraction in clinical diffusion-weighted magnetic resonance imaging.

    Get PDF
    The bi-exponential intravoxel-incoherent-motion (IVIM) model for diffusion-weighted MRI (DWI) fails to account for differential T 2 s in the model compartments, resulting in overestimation of pseudodiffusion fraction f. An extended model, T2-IVIM, allows removal of the confounding echo-time (TE) dependence of f, and provides direct compartment T 2 estimates. Two consented healthy volunteer cohorts (n  =  5, 6) underwent DWI comprising multiple TE/b-value combinations (Protocol 1: TE  =  62-102 ms, b  =  0-250 mm-2s, 30 combinations. Protocol 2: 8 b-values 0-800 mm-2s at TE  =  62 ms, with 3 additional b-values 0-50 mm-2s at TE  =  80, 100 ms; scanned twice). Data from liver ROIs were fitted with IVIM at individual TEs, and with the T2-IVIM model using all data. Repeat-measures coefficients of variation were assessed for Protocol 2. Conventional IVIM modelling at individual TEs (Protocol 1) demonstrated apparent f increasing with longer TE: 22.4  ±  7% (TE  =  62 ms) to 30.7  ±  11% (TE  =  102 ms); T2-IVIM model fitting accounted for all data variation. Fitting of Protocol 2 data using T2-IVIM yielded reduced f estimates (IVIM: 27.9  ±  6%, T2-IVIM: 18.3  ±  7%), as well as T 2  =  42.1  ±  7 ms, 77.6  ±  30 ms for true and pseudodiffusion compartments, respectively. A reduced Protocol 2 dataset yielded comparable results in a clinical time frame (11 min). The confounding dependence of IVIM f on TE can be accounted for using additional b/TE images and the extended T2-IVIM model

    Modulation of renal oxygenation and perfusion in rat kidney monitored by quantitative diffusion and blood oxygen level dependent magnetic resonance imaging on a clinical 1.5T platform.

    Get PDF
    Background To investigate the combined use of intravoxel incoherent motion (IVIM) diffusion-weighted (DW) and blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) to assess rat renal function using a 1.5T clinical platform.Methods Multiple b-value DW and BOLD MR images were acquired from adult rats using a parallel clinical coil arrangement, enabling quantitation of the apparent diffusion coefficient (ADC), IVIM-derived diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f), and the transverse relaxation time T2*, for whole kidney, renal cortex, and medulla. Following the acquisition of two baseline datasets to assess measurement repeatability, images were acquired following i.v. administration of hydralazine, furosemide, or angiotensin II for up to 40 min.Results Excellent repeatability (CoV 2* measured over the whole kidney. Hydralazine induced a marked and significant (p 2*, and a significant (p 2*. A more variable response to angiotensin II was determined, with a significant (p 2* established.Conclusions Multiparametric MRI, incorporating quantitation of IVIM DWI and BOLD biomarkers and performed on a clinical platform, can be used to monitor the acute effects of vascular and tubular modulating drugs on rat kidney function in vivo. Clinical adoption of such functional imaging biomarkers can potentially inform on treatment effects in patients with renal dysfunction

    Characterisation of fibrosis in chemically-induced rat mammary carcinomas using multi-modal endogenous contrast MRI on a 1.5T clinical platform.

    Get PDF
    Objectives To determine the ability of multi-parametric, endogenous contrast MRI to detect and quantify fibrosis in a chemically-induced rat model of mammary carcinoma.Methods Female Sprague-Dawley rats (n=18) were administered with N-methyl-N-nitrosourea; resulting mammary carcinomas underwent nine-b-value diffusion-weighted (DWI), ultrashort-echo (UTE) and magnetisation transfer (MT) magnetic resonance imaging (MRI) on a clinical 1.5T platform, and associated quantitative MR parameters were calculated. Excised tumours were histologically assessed for degree of necrosis, collagen, hypoxia and microvessel density. Significance level adjusted for multiple comparisons was p=0.0125.Results Significant correlations were found between MT parameters and degree of picrosirius red staining (r > 0.85, p a and δ, r 1 and T1s, Pearson), indicating that MT is sensitive to collagen content in mammary carcinoma. Picrosirius red also correlated with the DWI parameter fD* (r=0.801, p=0.0004) and conventional gradient-echo T2* (r=-0.660, p=0.0055). Percentage necrosis correlated moderately with ultrashort/conventional-echo signal ratio (r=0.620, p=0.0105). Pimonidazole adduct (hypoxia) and CD31 (microvessel density) staining did not correlate with any MR parameter assessed.Conclusions Magnetisation transfer MRI successfully detects collagen content in mammary carcinoma, supporting inclusion of MT imaging to identify fibrosis, a prognostic marker, in clinical breast MRI examinations.Key points • Magnetisation transfer imaging is sensitive to collagen content in mammary carcinoma. • Magnetisation transfer imaging to detect fibrosis in mammary carcinoma fibrosis is feasible. • IVIM diffusion does not correlate with microvessel density in preclinical mammary carcinoma

    Development of a temperature-controlled phantom for magnetic resonance quality assurance of diffusion, dynamic, and relaxometry measurements.

    Get PDF
    Purpose Diffusion-weighted (DW) and dynamic contrast-enhanced magnetic resonance imaging (MRI) are increasingly applied for the assessment of functional tissue biomarkers for diagnosis, lesion characterization, or for monitoring of treatment response. However, these techniques are vulnerable to the influence of various factors, so there is a necessity for a standardized MR quality assurance procedure utilizing a phantom to facilitate the reliable estimation of repeatability of these quantitative biomarkers arising from technical factors (e.g., B1 variation) affecting acquisition on scanners of different vendors and field strengths. The purpose of this study is to present a novel phantom designed for use in quality assurance for multicenter trials, and the associated repeatability measurements of functional and quantitative imaging protocols across different MR vendors and field strengths.Methods A cylindrical acrylic phantom was manufactured containing 7 vials of polyvinylpyrrolidone (PVP) solutions of different concentrations, ranging from 0% (distilled water) to 25% w/w, to create a range of different MR contrast parameters. Temperature control was achieved by equilibration with ice-water. Repeated MR imaging measurements of the phantom were performed on four clinical scanners (two at 1.5 T, two at 3.0 T; two vendors) using the same scanning protocol to assess the long-term and short-term repeatability. The scanning protocol consisted of DW measurements, inversion recovery (IR) T1 measurements, multiecho T2 measurement, and dynamic T1-weighted sequence allowing multiple variable flip angle (VFA) estimation of T1 values over time. For each measurement, the corresponding calculated parameter maps were produced. On each calculated map, regions of interest (ROIs) were drawn within each vial and the median value of these voxels was assessed. For the dynamic data, the autocorrelation function and their variance were calculated; for the assessment of the repeatability, the coefficients of variation (CoV) were calculated.Results For both field strengths across the available vendors, the apparent diffusion coefficient (ADC) at 0 °C ranged from (1.12 ± 0.01) × 10(-3) mm(2)/s for pure water to (0.48 ± 0.02) × 10(-3) mm(2)/s for the 25% w/w PVP concentration, presenting a minor variability between the vendors and the field strengths. T2 and IR-T1 relaxation time results demonstrated variability between the field strengths and the vendors across the different acquisitions. Moreover, the T1 values derived from the VFA method exhibited a large variation compared with the IR-T1 values across all the scanners for all repeated measurements, although the calculation of the standard deviation of the VFA-T1 estimate across each ROI and the autocorrelation showed a stability of the signal for three scanners, with autocorrelation of the signal over the dynamic series revealing a periodic variation in one scanner. Finally, the ADC, the T2, and the IR-T1 values exhibited an excellent repeatability across the scanners, whereas for the dynamic data, the CoVs were higher.Conclusions The combination of a novel PVP phantom, with multiple compartments to give a physiologically relevant range of ADC and T1 values, together with ice-water as a temperature-controlled medium, allows reliable quality assurance measurements that can be used to measure agreement between MRI scanners, critical in multicenter functional and quantitative imaging studies

    T<sub>2</sub>-adjusted computed diffusion-weighted imaging: A novel method to enhance tumour visualisation.

    Get PDF
    PurposeTo introduce T2-adjusted computed DWI (T2-cDWI), a method that provides synthetic images at arbitrary b-values and echo times (TEs) that improve tissue contrast by removing or increasing T2 contrast in diffusion-weighted images.Materials and methodsIn addition to the standard DWI acquisition protocol T2-weighted echo-planar images at multiple (≥2) echo times were acquired. This allows voxelwise estimation of apparent diffusion coefficient (ADC) and T2 values, permitting synthetic images to be generated at any chosen b-value and echo time. An analytical model is derived for the noise properties in T2-cDWI, and validated using a diffusion test-object. Furthermore, we present T2-cDWI in two example clinical case studies: (i) a patient with mesothelioma demonstrating multiple disease tissue compartments and (ii) a patient with primary ovarian cancer demonstrating solid and cystic disease compartments.ResultsMeasured image noise in T2-cDWI from phantom experiments conformed to the analytical model and demonstrated that T2-cDWI at high computed b-value/TE combinations achieves lower noise compared with conventional DWI. In patients, T2-cDWI with low b-value and long TE enhanced fluid signal while suppressing solid tumour components. Conversely, large b-values and short TEs overcome T2 shine-through effects and increase the contrast between tumour and fluid compared with conventional high-b-value DW images.ConclusionT2-cDWI is a promising clinical tool for improving image signal-to-noise, image contrast, and tumour detection through suppression of T2 shine-through effects

    Repeatability of derived parameters from histograms following non-Gaussian diffusion modelling of diffusion-weighted imaging in a paediatric oncological cohort.

    Get PDF
    Objectives To examine repeatability of parameters derived from non-Gaussian diffusion models in data acquired in children with solid tumours.Methods Paediatric patients (-2 s) at 1.5 T in a prospective study. Tumour ROIs were drawn (3 slices) and all data fitted using IVIM, stretched exponential, and kurtosis models; percentage coefficients of variation (CV) calculated for each parameter at all ROI histogram centiles, including the medians.Results The values for ADC, D, DDCα, α, and DDCK gave CV 30 %) over the histogram. ADC, D, DDCα, and DDCK were strongly correlated (ρ > 0.9), DDCα and α were not correlated (ρ = 0.083).Conclusion Perfusion- and kurtosis-related parameters displayed larger, more variable CV across the histogram, indicating observed clinical changes outside of D/DDC in these models should be interpreted with caution. Centiles below 5th for all parameters show high CV and are unreliable as diffusion metrics. The stretched exponential model behaved well for both DDCα and α, making it a strong candidate for modelling multiple-b-value diffusion imaging data.Key points • ADC has good repeatability as low 5th centile of the histogram distribution. • High CV was observed for all parameters at extremes of histogram. • Parameters from the stretched exponential model showed low coefficients of variation. • The median ADC, D, DDC α , and DDC K are highly correlated and repeatable. • Perfusion/kurtosis parameters showed high CV variations across their histogram distributions

    Extracranial Soft-Tissue Tumors: Repeatability of Apparent Diffusion Coefficient Estimates from Diffusion-weighted MR Imaging.

    Get PDF
    Purpose To assess the repeatability of apparent diffusion coefficient (ADC) estimates in extracranial soft-tissue diffusion-weighted magnetic resonance imaging across a wide range of imaging protocols and patient populations. Materials and Methods Nine prospective patient studies and one prospective volunteer study, performed between 2006 and 2016 with research ethics committee approval and written informed consent from each subject, were included in this single-institution study. A total of 141 tumors and healthy organs were imaged twice (interval between repeated examinations, 45 minutes to 10 days, depending the on study) to assess the repeatability of median and mean ADC estimates. The Levene test was used to determine whether ADC repeatability differed between studies. The Pearson linear correlation coefficient was used to assess correlation between coefficient of variation (CoV) and the year the study started, study size, and volumes of tumors and healthy organs. The repeatability of ADC estimates from small, medium, and large tumors and healthy organs was assessed irrespective of study, and the Levene test was used to determine whether ADC repeatability differed between these groups. Results CoV aggregated across all studies was 4.1% (range for each study, 1.7%-6.5%). No correlation was observed between CoV and the year the study started or study size. CoV was weakly correlated with volume (r = -0.5, P = .1). Repeatability was significantly different between small, medium, and large tumors (P < .05), with the lowest CoV (2.6%) for large tumors. There was a significant difference in repeatability between studies-a difference that did not persist after the study with the largest tumors was excluded. Conclusion ADC is a robust imaging metric with excellent repeatability in extracranial soft tissues across a wide range of tumor sites, sizes, patient populations, and imaging protocol variations. Online supplemental material is available for this article

    1H nuclear magnetic resonance spectroscopy characterisation of metabolic phenotypes in the medulloblastoma of the SMO transgenic mice

    Get PDF
    BACKGROUND: Human medulloblastomas exhibit diverse molecular pathology. Aberrant hedgehog signalling is found in 20-30% of human medulloblastomas with largely unknown metabolic consequences. METHODS: Transgenic mice over-expressing smoothened (SMO) receptor in granule cell precursors with high incidence of exophytic medulloblastomas were sequentially followed up by magnetic resonance imaging (MRI) and characterised for metabolite phenotypes by ¹H MR spectroscopy (MRS) in vivo and ex vivo using high-resolution magic angle spinning (HR-MAS) ¹H MRS. RESULTS: Medulloblastomas in the SMO mice presented as T₂ hyperintense tumours in MRI. These tumours showed low concentrations of N-acetyl aspartate and high concentrations of choline-containing metabolites (CCMs), glycine, and taurine relative to the cerebellar parenchyma in the wild-type (WT) C57BL/6 mice. In contrast, ¹H MRS metabolite concentrations in normal appearing cerebellum of the SMO mice were not different from those in the WT mice. Macromolecule and lipid ¹H MRS signals in SMO medulloblastomas were not different from those detected in the cerebellum of WT mice. The HR-MAS analysis of SMO medulloblastomas confirmed the in vivo ¹H MRS metabolite profiles, and additionally revealed that phosphocholine was strongly elevated in medulloblastomas accounting for the high in vivo CCM. CONCLUSIONS: These metabolite profiles closely mirror those reported from human medulloblastomas confirming that SMO mice provide a realistic model for investigating metabolic aspects of this disease. Taurine, glycine, and CCM are potential metabolite biomarkers for the SMO medulloblastomas. The MRS data from the medulloblastomas with defined molecular pathology is discussed in the light of metabolite profiles reported from human tumours

    Portuguese emigration to Angola (2000-2015): Strengthening a specific postcolonial relationship in a new global framework?

    Get PDF
    Outflows to the Portuguese-speaking countries, although not dominant, played an important role in the growth of Portuguese emigration during the economic recession and austerity period, between 2010 and 2016. This chapter examines this migration process, considering that contemporary migration from Portugal to Angola is an example of reverse post-colonial migration within the framework of North-South movements. It presents the historical and socio-demographic background of Angola and some theoretical insights on the issue of North-South migration. The analyses of the migration process and the emigrants’ profiles rely in statistics and academic literature but especially on data gathered in a direct survey. Attention is given to indicators of integration, relations with Portugal and the post-colonial nature of the process. The profile of Portuguese in Angola shows an overrepresentation of highly skilled males over 35 years old, which migrated for professional reasons and sustain relations with Portugal through diverse transnational practices. This supports explanations for the emergence of North-South migration by appeal to economic expansion associated to the increasing insertion of several developing countries into global networks. However, the analysis fails to back up the hypothesis that Portuguese emigration to Angola is a form of reverse post-colonial migration based in ancestral return.info:eu-repo/semantics/publishedVersio
    corecore