106 research outputs found

    Labeling Studies Clarify the Committed Step in Bacterial Gibberellin Biosynthesis

    Get PDF
    Bacteria have evolved gibberellin phytohormone biosynthesis independently of plants and fungi. Through 13C-labeling and NMR analysis, the mechanistically unusual “B” ring contraction catalyzed by a cytochrome P450 (CYP114), which is the committed step in gibberellin biosynthesis, was shown to occur via oxidative extrusion of carbon-7 from ent-kaurenoic acid in bacteria. This is identical to the convergently evolved chemical transformation in plants and fungi, suggesting a common semipinacol rearrangement mechanism potentially guided by carbon-4α carboxylate proximity

    The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria

    Get PDF
    The rich diversity of secondary metabolites produced by soil bacteria has been appreciated for over a century, and advances in chemical analysis and genome sequencing continue to greatly advance our understanding of this biochemical complexity. However, we are just at the beginning of understanding the physicochemical properties of bacterial metabolites, the factors that govern their production and ecological roles. Interspecific interactions and competitor sensing are among the main biotic factors affecting the production of bacterial secondary metabolites. Many soil bacteria produce both volatile and soluble compounds. In contrast to soluble compounds, volatile organic compounds can diffuse easily through air- and gas-filled pores in the soil and likely play an important role in long-distance microbial interactions. In this review we provide an overview of the most important soluble and volatile classes of secondary metabolites produced by soil bacteria, their ecological roles, and their possible synergistic effects

    Biological Activity of Volatiles from Marine and Terrestrial Bacteria

    Get PDF
    The antiproliferative activity of 52 volatile compounds released from bacteria was investigated in agar diffusion assays against medically important microorganisms and mouse fibroblasts. Furthermore, the activity of these compounds to interfere with the quorum-sensing-systems was tested with two different reporter strains. While some of the compounds specific to certain bacteria showed some activity in the antiproliferative assay, the compounds common to many bacteria were mostly inactive. In contrast, some of these compounds were active in the quorum-sensing-tests. γ-Lactones showed a broad reactivity, while pyrazines seem to have only low intrinsic activity. A general discussion on the ecological importance of these findings is given

    Synthesis and bioactivity of analogues of the marine antibiotic tropodithietic acid

    Get PDF
    Tropodithietic acid (TDA) is a structurally unique sulfur-containing antibiotic from the Roseobacter clade bacterium Phaeobacter inhibens DSM 17395 and a few other related species. We have synthesised several structural analogues of TDA and used them in bioactivity tests against Staphylococcus aureus and Vibrio anguillarum for a structure–activity relationship (SAR) study, revealing that the sulfur-free analogue of TDA, tropone-2-carboxylic acid, has an antibiotic activity that is even stronger than the bioactivity of the natural product. The synthesis of this compound and of several analogues is presented and the bioactivity of the synthetic compounds is discussed

    Diversity and Functional Evolution of Terpene Synthases in Dictyostelid Social Amoebae

    Get PDF
    Dictyostelids, or social amoebae, have a unique life style in forming multicellular fruiting bodies from unicellular amoeboids upon starvation. Recently, dictyostelids were found to contain terpene synthase (TPS) genes, a gene type of secondary metabolism previously known to occur only in plants, fungi and bacteria. Here we report an evolutionary functional study of dictyostelid TPS genes. The number of TPS genes in six species of dictyostelids examined ranges from 1 to 19; and the model species Dictyostelium purpureum contains 12 genes. Using in vitro enzyme assays, the 12 TPS genes from D. purpureum were shown to encode functional enzymes with distinct product profiles. The expression of the 12 TPS genes in D. purpureum is developmentally regulated. During multicellular development, D. purpureum releases a mixture of volatile terpenes dominated by sesquiterpenes that are the in vitro products of a subset of the 12 TPS genes. The quality and quantity of the terpenes released from D. purpureum, however, bear little resemblance to those of D. discoideum, a closely related dictyostelid. Despite these variations, the conserved clade of dictyostelid TPSs, which have an evolutionary distance of more than 600 million years, has the same biochemical function, catalyzing the formation of a sesquiterpene protoillud-7-ene. Taken together, our results indicate that the dynamic evolution of dictyostelid TPS genes includes both purifying selection of an orthologous group and species-specific expansion with functional divergence. Consequently, the terpenes produced by these TPSs most likely have conserved as well as speciesadaptive biological functions as chemical languages in dictyostelids

    The Sfp-Type 4′-Phosphopantetheinyl Transferase Ppt1 of Fusarium fujikuroi Controls Development, Secondary Metabolism and Pathogenicity

    Get PDF
    The heterothallic ascomycete Fusarium fujikuroi is a notorious rice pathogen causing super-elongation of plants due to the production of terpene-derived gibberellic acids (GAs) that function as natural plant hormones. Additionally, F. fujikuroi is able to produce a variety of polyketide- and non-ribosomal peptide-derived metabolites such as bikaverins, fusarubins and fusarins as well as metabolites from yet unidentified biosynthetic pathways, e.g. moniliformin. The key enzymes needed for their production belong to the family of polyketide synthases (PKSs) and non-ribosomal peptide synthases (NRPSs) that are generally known to be post-translationally modified by a Sfp-type 4′phosphopantetheinyl transferase (PPTase). In this study we provide evidence that the F. fujikuroi Sfp-type PPTase FfPpt1 is essentially involved in lysine biosynthesis and production of bikaverins, fusarubins and fusarins, but not moniliformin as shown by analytical methods. Concomitantly, targeted Ffppt1 deletion mutants reveal an enhancement of terpene-derived metabolites like GAs and volatile substances such as α-acorenol. Pathogenicity assays on rice roots using fluorescent labeled wild-type and Ffppt1 mutant strains indicate that lysine biosynthesis and iron acquisition but not PKS and NRPS metabolism is essential for establishment of primary infections of F. fujikuroi. Additionally, FfPpt1 is involved in conidiation and sexual mating recognition possibly by activating PKS- and/or NRPS-derived metabolites that could act as diffusible signals. Furthermore, the effect on iron acquisition of Ffppt1 mutants led us to identify a previously uncharacterized putative third reductive iron uptake system (FfFtr3/FfFet3) that is closely related to the FtrA/FetC system of A. fumigatus. Functional characterization provides evidence that both proteins are involved in iron acquisition and are liable to transcriptional repression of the homolog of the Aspergillus GATA-type transcription factor SreA under iron-replete conditions. Targeted deletion of the first Fusarium homolog of this GATA-type transcription factor-encoding gene, Ffsre1, strongly indicates its involvement in regulation of iron homeostasis and oxidative stress resistance

    antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification

    Get PDF
    Many antibiotics, chemotherapeutics, crop protection agents and food preservatives originate from molecules produced by bacteria, fungi or plants. In recent years, genome mining methodologies have been widely adopted to identify and characterize the biosynthetic gene clusters encoding the production of such compounds. Since 2011, the ‘antibiotics and secondary metabolite analysis shell—antiSMASH’ has assisted researchers in efficiently performing this, both as a web server and a standalone tool. Here, we present the thoroughly updated antiSMASH version 4, which adds several novel features, including prediction of gene cluster boundaries using the ClusterFinder method or the newly integrated CASSIS algorithm, improved substrate specificity prediction for non-ribosomal peptide synthetase adenylation domains based on the new SANDPUMA algorithm, improved predictions for terpene and ribosomally synthesized and post-translationally modified peptides cluster products, reporting of sequence similarity to proteins encoded in experimentally characterized gene clusters on a per-protein basis and a domain-level alignment tool for comparative analysis of trans-AT polyketide synthase assembly line architectures. Additionally, several usability features have been updated and improved. Together, these improvements make antiSMASH up-to-date with the latest developments in natural product research and will further facilitate computational genome mining for the discovery of novel bioactive molecules

    Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca

    No full text
    The volatiles released by Micromonospora aurantiaca were collected by means of a closed-loop stripping apparatus (CLSA) and analysed by GC–MS. The headspace extracts contained more than 90 compounds from different classes. Fatty acid methyl esters (FAMEs) comprised the major compound class including saturated unbranched, monomethyl and dimethyl branched FAMEs in diverse structural variants: Unbranched, α-branched, γ-branched, (ω−1)-branched, (ω−2)-branched, α- and (ω−1)-branched, γ- and (ω−1)-branched, γ- and (ω−2)-branched, and γ- and (ω−3)-branched FAMEs. FAMEs of the last three types have not been described from natural sources before. The structures for all FAMEs have been suggested based on their mass spectra and on a retention index increment system and verified by the synthesis of key reference compounds. In addition, the structures of two FAMEs, methyl 4,8-dimethyldodecanoate and the ethyl-branched compound methyl 8-ethyl-4-methyldodecanoate were deduced from their mass spectra. Feeding experiments with isotopically labelled [2H10]leucine, [2H10]isoleucine, [2H8]valine, [2H5]sodium propionate, and [methyl-2H3]methionine demonstrated that the responsible fatty acid synthase (FAS) can use different branched and unbranched starter units and is able to incorporate methylmalonyl-CoA elongation units for internal methyl branches in various chain positions, while the methyl ester function is derived from S-adenosyl methionine (SAM)

    Natural products in synthesis and biosynthesis II

    No full text
    corecore