271 research outputs found

    A computational approach to building gene silencing modules

    Get PDF
    The past decades pointed out RNA has alot of functions besides being an information carrier (mRNA). Small RNAs (e.g. antisense RNA) form an essential part of different prokaryotic regulatory mechanisms by, for example, blocking the ribosome binding site (RBS). As such sRNA can be used in synthetically constructed biological devices to silence a gene on demand. Tools and know how for model-based design of RNA molecules that efficiently block the RBS of a specific gene are however still underdeveloped. Here we present a method to design silencing modules that can efficiently block the translational process. This approach uses knowledge on antisense RNA to model the physical nature of this biological interaction. The available literature was used to identify potential characteristics of a good silencing sequence. Based on this information a bioinformatics framework was developed to enable a computational characterization of a potential silencing sequence. Herein, several dynamic programming algorithms are used to accurately predict these RNA-RNA interactions. The influence of the different defined features of the candidate sequences, which were semi-rationally generated and send through a preliminary in silico filter, was investigated. The performance of a group of selected candidate sequences are tested in vivo to determine their silencing capacities. As a test case, mRNA containing a red fluorescent protein was constructed using biofab parts. Based on these results the importance of the features is evaluated. Ultimately, this computational approach can be used for the design of tailor made silencing modules with excellent performance

    Silicon photonic sensors incorporated in a digital microfluidic system

    Get PDF
    Label-free biosensing with silicon nanophotonic microring resonator sensors has proven to be an excellent sensing technique for achieving high-throughput and high sensitivity, comparing favorably with other labeled and label-free sensing techniques. However, as in any biosensing platform, silicon nanophotonic microring resonator sensors require a fluidic component which allows the continuous delivery of the sample to the sensor surface. This component is typically based on microchannels in polydimethylsiloxane or other materials, which add cost and complexity to the system. The use of microdroplets in a digital microfluidic system, instead of continuous flows, is one of the recent trends in the field, where microliter- to picoliter-sized droplets are generated, transported, mixed, and split, thereby creating miniaturized reaction chambers which can be controlled individually in time and space. This avoids cross talk between samples or reagents and allows fluid plugs to be manipulated on reconfigurable paths, which cannot be achieved using the more established and more complex technology of microfluidic channels where droplets are controlled in series. It has great potential for high-throughput liquid handling, while avoiding on-chip cross-contamination. We present the integration of two miniaturized technologies: label-free silicon nanophotonic microring resonator sensors and digital microfluidics, providing an alternative to the typical microfluidic system based on microchannels. The performance of this combined system is demonstrated by performing proof-of-principle measurements of glucose, sodium chloride, and ethanol concentrations. These results show that multiplexed real-time detection and analysis, great flexibility, and portability make the combination of these technologies an ideal platform for easy and fast use in any laboratory

    A Continuum Model for Metabolic Gas Exchange in Pear Fruit

    Get PDF
    Exchange of O2 and CO2 of plants with their environment is essential for metabolic processes such as photosynthesis and respiration. In some fruits such as pears, which are typically stored under a controlled atmosphere with reduced O2 and increased CO2 levels to extend their commercial storage life, anoxia may occur, eventually leading to physiological disorders. In this manuscript we have developed a mathematical model to predict the internal gas concentrations, including permeation, diffusion, and respiration and fermentation kinetics. Pear fruit has been selected as a case study. The model has been used to perform in silico experiments to evaluate the effect of, for example, fruit size or ambient gas concentration on internal O2 and CO2 levels. The model incorporates the actual shape of the fruit and was solved using fluid dynamics software. Environmental conditions such as temperature and gas composition have a large effect on the internal distribution of oxygen and carbon dioxide in fruit. Also, the fruit size has a considerable effect on local metabolic gas concentrations; hence, depending on the size, local anaerobic conditions may result, which eventually may lead to physiological disorders. The model developed in this manuscript is to our knowledge the most comprehensive model to date to simulate gas exchange in plant tissue. It can be used to evaluate the effect of environmental stresses on fruit via in silico experiments and may lead to commercial applications involving long-term storage of fruit under controlled atmospheres

    Cartilaginous spheroid-assembly design considerations for endochondral ossification: towards robotic-driven biomanufacturing.

    Full text link
    peer reviewedSpheroids have become essential building blocks for biofabrication of functional tissues. Spheroid formats allow high cell-densities to be efficiently engineered into tissue structures closely resembling the native tissues. In this work, we explore the assembly capacity of cartilaginous spheroids (d∼ 150µm) in the context of endochondral bone formation. The fusion capacity of spheroids at various degrees of differentiation was investigated and showed decreased kinetics as well as remodeling capacity with increased spheroid maturity. Subsequently, design considerations regarding the dimensions of engineered spheroid-based cartilaginous mesotissues were explored for the corresponding time points, defining critical dimensions for these type of tissues as they progressively mature. Next, mesotissue assemblies were implanted subcutaneously in order to investigate the influence of spheroid fusion parameters on endochondral ossification. Moreover, as a step towards industrialization, we demonstrated a novel automated image-guided robotics process, based on targeting and registering single-spheroids, covering the range of spheroid and mesotissue dimensions investigated in this work. This work highlights a robust and automated high-precision biomanufacturing roadmap for producing spheroid-based implants for bone regeneration

    Increasing the fungicidal action of Amphotericin B by inhibiting the Nitric Oxide-Dependent tolerance pathway

    Get PDF
    Amphotericin B (AmB) induces oxidative and nitrosative stresses, characterized by production of reactive oxygen and nitrogen species, in fungi. Yet, how these toxic species contribute to AmB-induced fungal cell death is unclear. We investigated the role of superoxide and nitric oxide radicals in AmB's fungicidal activity in Saccharomyces cerevisiae, using a digital microfluidic platform, which enabled monitoring individual cells at a spatiotemporal resolution, and plating assays. The nitric oxide synthase inhibitor L-NAME was used to interfere with nitric oxide radical production. L-NAME increased and accelerated AmB-induced accumulation of superoxide radicals, membrane permeabilization, and loss of proliferative capacity in S. cerevisiae. In contrast, the nitric oxide donor S-nitrosoglutathione inhibited AmB's action. Hence, superoxide radicals were important for AmB's fungicidal action, whereas nitric oxide radicals mediated tolerance towards AmB. Finally, also the human pathogens Candida albicans and Candida glabrata were more susceptible to AmB in the presence of L-NAME, pointing to the potential of AmB-L-NAME combination therapy to treat fungal infections.Kim Vriens acknowledges the receipt of a predoctoral grant from the Flanders Innovation & Entrepeneurship Agency (IWT-SB 111016); Karin Thevissen acknowledges the receipt of a mandate of Industrial Research Fund (KU Leuven). In addition, the research leading to these results has received funding from the Research Foundation - Flanders (FWO G086114N and G080016N) and the KU Leuven (OT 13/ 058 and IDO 10/012, IOF KP/12/009 Atheromix, IOF KP/ 12/002 Nanodiag). This work was partially developed under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). Belém Sampaio-Marques is supported by the fellowship SFRH/BPD/90533/2012 funded by Fundação para a Ciência e Tecnologia (FCT, Portugal).info:eu-repo/semantics/publishedVersio

    FO‐SPR biosensor calibrated with recombinant extracellular vesicles enables specific and sensitive detection directly in complex matrices

    Get PDF
    Extracellular vesicles (EVs) have drawn huge attention for diagnosing myriad of diseases, including cancer. However, the EV detection and analyses procedures often lack much desired sample standardization. To address this, we used well-characterized recombinant EVs (rEVs) for the first time as a biological reference material in developing a fiber optic surface plasmon resonance (FO-SPR) bioassay. In this context, EV binding on the FO-SPR probes was achieved only with EV-specific antibodies (e.g. anti-CD9 and anti-CD63) but not with non-specific anti-IgG. To increase detection sensitivity, we tested six different combinations of EV-specific antibodies in a sandwich bioassay. Calibration curves were generated with two most effective combinations (anti-CD9/(B)anti-CD81 and anti-CD63/(B)anti-CD9), resulting in 10(3) and 10(4) times higher sensitivity than the EV concentration in human blood plasma from healthy or cancer patients, respectively. Additionally, by using anti-CD63/(B)anti-CD9, we detected rEVs spiked in cell culture medium and HEK293 endogenous EVs in the same matrix without any prior EV purification or enrichment. Lastly, we selectively captured breast cancer cell EVs spiked in blood plasma using anti-EpCA M antibody on the FO-SPR surface. The obtained results combined with FO-SPR real-time monitoring, fast response time and ease of operation, demonstrate its outstanding potential for EV quantification and analysis
    corecore