17 research outputs found

    Nanomaterials for the Local and Targeted Delivery of Osteoarthritis Drugs

    Get PDF
    Nanotechnology has found its potential in every possible field of science and engineering. It offers a plethora of options to design tools at the nanometer scale, which can be expected to function more effectively than micro- and macrosystems for specific applications. Although the debate regarding the safety of synthetic nanomaterials for clinical applications endures, it is a promising technology due to its potential to augment current treatments. Various materials such as synthetic polymer, biopolymers, or naturally occurring materials such as proteins and peptides can serve as building blocks for adaptive nanoscale formulations. The choice of materials depends highly on the application. We focus on the use of nanoparticles for the treatment of degenerative cartilage diseases, such as osteoarthritis (OA). Current therapies for OA focus on treating the symptoms rather than modifying the disease. The usefulness of OA disease modifying drugs is hampered by side effects and lack of suitable drug delivery systems that target, deliver, and retain drugs locally. This challenge can be overcome by using nanotechnological formulations. We describe the different nanodrug delivery systems and their potential for cartilage repair. This paper provides the reader basal understanding of nanomaterials and aims at drawing new perspectives on the use of existing nanotechnological formulations for the treatment of osteoarthritis

    Hypoxia inhibits hypertrophic differentiation and endochondral ossification in explanted tibiae.

    Get PDF
    Hypertrophic differentiation of growth plate chondrocytes induces angiogenesis which alleviates hypoxia normally present in cartilage. In the current study, we aim to determine whether alleviation of hypoxia is merely a downstream effect of hypertrophic differentiation as previously described or whether alleviation of hypoxia and consequent changes in oxygen tension mediated signaling events also plays an active role in regulating the hypertrophic differentiation process itself.Fetal mouse tibiae (E17.5) explants were cultured up to 21 days under normoxic or hypoxic conditions (21% and 2.5% oxygen respectively). Tibiae were analyzed on growth kinetics, histology, gene expression and protein secretion.The oxygen level had a strong influence on the development of explanted fetal tibiae. Compared to hypoxia, normoxia increased the length of the tibiae, length of the hypertrophic zone, calcification of the cartilage and mRNA levels of hypertrophic differentiation-related genes e.g. MMP9, MMP13, RUNX2, COL10A1 and ALPL. Compared to normoxia, hypoxia increased the size of the cartilaginous epiphysis, length of the resting zone, calcification of the bone and mRNA levels of hyaline cartilage-related genes e.g. ACAN, COL2A1 and SOX9. Additionally, hypoxia enhanced the mRNA and protein expression of the secreted articular cartilage markers GREM1, FRZB and DKK1, which are able to inhibit hypertrophic differentiation.Collectively our data suggests that oxygen levels play an active role in the regulation of hypertrophic differentiation of hyaline chondrocytes. Normoxia stimulates hypertrophic differentiation evidenced by the expression of hypertrophic differentiation related genes. In contrast, hypoxia suppresses hypertrophic differentiation of chondrocytes, which might be at least partially explained by the induction of GREM1, FRZB and DKK1 expression

    Histological analysis of calcification in explanted tibiae.

    No full text
    <p>(A) Midsagittal sections of tibiae were stained with Alizarin red after explantation or cultured seven days under hypoxic or normoxic conditions. (B) Image analysis was used to determine the length of the intensely calcified tissue, which was taken as the broken line indicated in ‘A’. (C) The area of calcification was used to determine relative calcification of the samples. (D) Higher magnification microphotographs were used to investigate the calcification of the hypertrophic cartilage that resides on top of the intensely stained bone. The dashed line represents the osteochondral interface. (N = 15). * = P<0.05 compared to freshly isolated tibiae. # = P<0.05 compared to normoxic condition of the same time point.</p

    Explanted tibiae cultured 21 days under hypoxic or normoxic conditions.

    No full text
    <p>(A) Microphotographs of representative tibiae at different points in time. (B) Using image analysis the average tibiae lengths were calculated. (N = 18). * = P<0.05. ** = P<0.01.</p

    Effect of hypoxic and normoxic culture conditions on Frzb and Dkk1 protein levels.

    No full text
    <p>(A) Frzb and Dkk1 levels were quantified in the conditioned medium of tibiae, which were cultured for 7 days without receiving new medium in either hypoxia or normoxia (N = 5). (B) The effect of oxygen levels on Frzb and Dkk1 on protein activity over time was studied by exposing culture medium containing 10% fetal bovine serum to either hypoxia or normoxia for 7 days in 37°C. (N = 4). Frzb and Dkk1 protein levels were analyzed using ELISA. * = P<0.05 compared to normoxic condition of the same time point.</p

    Dietary restriction but not angiotensin II type 1 receptor blockade improves DNA damage-related vasodilator dysfunction in rapidly aging Ercc1Δ/- mice.

    No full text
    DNA damage is an important contributor to endothelial dysfunction and age-related vascular disease. Recently, we demonstrated in a DNA repair-deficient, prematurely aging mouse model (Ercc1Δ/- mice) that dietary restriction (DR) strongly increases life- and health span, including ameliorating endothelial dysfunction, by preserving genomic integrity. In this mouse mutant displaying prominent accelerated, age-dependent endothelial dysfunction we investigated the signaling pathways involved in improved endothelium-mediated vasodilation by DR, and explore the potential role of the renin-angiotensin system (RAS). Ercc1Δ/- mice showed increased blood pressure and decreased aortic relaxations to acetylcholine (ACh) in organ bath experiments. Nitric oxide (NO) signaling and phospho-Ser1177-eNOS were compromised in Ercc1Δ/- DR improved relaxations by increasing prostaglandin-mediated responses. Increase of cyclo-oxygenase 2 and decrease of phosphodiesterase 4B were identified as potential mechanisms. DR also prevented loss of NO signaling in vascular smooth muscle cells and normalized angiotensin II (Ang II) vasoconstrictions, which were increased in Ercc1Δ/- mice. Ercc1Δ/- mutants showed a loss of Ang II type 2 receptor-mediated counter-regulation of Ang II type 1 receptor-induced vasoconstrictions. Chronic losartan treatment effectively decreased blood pressure, but did not improve endothelium-dependent relaxations. This result might relate to the aging-associated loss of treatment efficacy of RAS blockade with respect to endothelial function improvement. In summary, DR effectively prevents endothelium-dependent vasodilator dysfunction by augmenting prostaglandin-mediated responses, whereas chronic Ang II type 1 receptor blockade is ineffective

    Fetal Mesenchymal Stromal Cells Differentiating towards Chondrocytes Acquire a Gene Expression Profile Resembling Human Growth Plate Cartilage

    Get PDF
    <div><p>We used human fetal bone marrow-derived mesenchymal stromal cells (hfMSCs) differentiating towards chondrocytes as an alternative model for the human growth plate (GP). Our aims were to study gene expression patterns associated with chondrogenic differentiation to assess whether chondrocytes derived from hfMSCs are a suitable model for studying the development and maturation of the GP. hfMSCs efficiently formed hyaline cartilage in a pellet culture in the presence of TGFβ3 and BMP6. Microarray and principal component analysis were applied to study gene expression profiles during chondrogenic differentiation. A set of 232 genes was found to correlate with <em>in vitro</em> cartilage formation. Several identified genes are known to be involved in cartilage formation and validate the robustness of the differentiating hfMSC model. KEGG pathway analysis using the 232 genes revealed 9 significant signaling pathways correlated with cartilage formation. To determine the progression of growth plate cartilage formation, we compared the gene expression profile of differentiating hfMSCs with previously established expression profiles of epiphyseal GP cartilage. As differentiation towards chondrocytes proceeds, hfMSCs gradually obtain a gene expression profile resembling epiphyseal GP cartilage. We visualized the differences in gene expression profiles as protein interaction clusters and identified many protein clusters that are activated during the early chondrogenic differentiation of hfMSCs showing the potential of this system to study GP development.</p> </div

    An evaluation of COVID-19 serological assays informs future diagnostics and exposure assessment.

    Get PDF
    The world is entering a new era of the COVID-19 pandemic in which there is an increasing call for reliable antibody testing. To support decision making on the deployment of serology for either population screening or diagnostics, we present a detailed comparison of serological COVID-19 assays. We show that among the selected assays there is a wide diversity in assay performance in different scenarios and when correlated to virus neutralizing antibodies. The Wantai ELISA detecting total immunoglobulins against the receptor binding domain of SARS CoV-2, has the best overall characteristics to detect functional antibodies in different stages and severity of disease, including the potential to set a cut-off indicating the presence of protective antibodies. The large variety of available serological assays requires proper assay validation before deciding on deployment of assays for specific applications

    Gene expression of genes by KEGG signaling pathway.

    No full text
    <p>KEGG signaling pathways significantly associated with chondrogenic differentiation of hfMSCs. For each pathway, genes showing the same distinct expression profile during 5 weeks of chondrogenic differentiation are depicted as groups.</p
    corecore