48 research outputs found

    Incorporation of DPP6a and DPP6K Variants in Ternary Kv4 Channel Complex Reconstitutes Properties of A-type K Current in Rat Cerebellar Granule Cells

    Get PDF
    Dipeptidyl peptidase-like protein 6 (DPP6) proteins co-assemble with Kv4 channel α-subunits and Kv channel-interacting proteins (KChIPs) to form channel protein complexes underlying neuronal somatodendritic A-type potassium current (ISA). DPP6 proteins are expressed as N-terminal variants (DPP6a, DPP6K, DPP6S, DPP6L) that result from alternative mRNA initiation and exhibit overlapping expression patterns. Here, we study the role DPP6 variants play in shaping the functional properties of ISA found in cerebellar granule (CG) cells using quantitative RT-PCR and voltage-clamp recordings of whole-cell currents from reconstituted channel complexes and native ISA channels. Differential expression of DPP6 variants was detected in rat CG cells, with DPP6K (41±3%)>DPP6a (33±3%)>>DPP6S (18±2%)>DPP6L (8±3%). To better understand how DPP6 variants shape native neuronal ISA, we focused on studying interactions between the two dominant variants, DPP6K and DPP6a. Although previous studies did not identify unique functional effects of DPP6K, we find that the unique N-terminus of DPP6K modulates the effects of KChIP proteins, slowing recovery and producing a negative shift in the steady-state inactivation curve. By contrast, DPP6a uses its distinct N-terminus to directly confer rapid N-type inactivation independently of KChIP3a. When DPP6a and DPP6K are co-expressed in ratios similar to those found in CG cells, their distinct effects compete in modulating channel function. The more rapid inactivation from DPP6a dominates during strong depolarization; however, DPP6K produces a negative shift in the steady-state inactivation curve and introduces a slow phase of recovery from inactivation. A direct comparison to the native CG cell ISA shows that these mixed effects are present in the native channels. Our results support the hypothesis that the precise expression and co-assembly of different auxiliary subunit variants are important factors in shaping the ISA functional properties in specific neuronal populations

    Surface and interface states of Bi2Se3 thin films investigated by optical second-harmonic generation and terahertz emission

    Get PDF
    We investigate the surface and interface states of Bi2Se3 thin films by using the second-harmonic generation technique. Distinct from the surface of bulk crystals, the film surface and interface show the isotropic azimuth dependence of second-harmonic intensity, which is attributed to the formation of randomly oriented domains on the in-plane. Based on the nonlinear susceptibility deduced from the model fitting, we determine that the surface band bending induced in a space charge region occurs more strongly at the film interface facing the Al2O3 substrate or capping layer compared with the interface facing the air. We demonstrate that distinct behavior of the terahertz electric field emitted from the samples can provide further information about the surface electronic state of Bi2Se3. (C) 2016 AIP Publishing LLC.open1133sciescopu

    Genome Wide Association Identifies PPFIA1 as a Candidate Gene for Acute Lung Injury Risk Following Major Trauma

    Get PDF
    Acute Lung Injury (ALI) is a syndrome with high associated mortality characterized by severe hypoxemia and pulmonary infiltrates in patients with critical illness. We conducted the first investigation to use the genome wide association (GWA) approach to identify putative risk variants for ALI. Genome wide genotyping was performed using the Illumina Human Quad 610 BeadChip. We performed a two-stage GWA study followed by a third stage of functional characterization. In the discovery phase (Phase 1), we compared 600 European American trauma-associated ALI cases with 2266 European American population-based controls. We carried forward the top 1% of single nucleotide polymorphisms (SNPs) at p<0.01 to a replication phase (Phase 2) comprised of a nested case-control design sample of 212 trauma-associated ALI cases and 283 at-risk trauma non-ALI controls from ongoing cohort studies. SNPs that replicated at the 0.05 level in Phase 2 were subject to functional validation (Phase 3) using expression quantitative trait loci (eQTL) analyses in stimulated B-lymphoblastoid cell lines (B-LCL) in family trios. 159 SNPs from the discovery phase replicated in Phase 2, including loci with prior evidence for a role in ALI pathogenesis. Functional evaluation of these replicated SNPs revealed rs471931 on 11q13.3 to exert a cis-regulatory effect on mRNA expression in the PPFIA1 gene (p = 0.0021). PPFIA1 encodes liprin alpha, a protein involved in cell adhesion, integrin expression, and cell-matrix interactions. This study supports the feasibility of future multi-center GWA investigations of ALI risk, and identifies PPFIA1 as a potential functional candidate ALI risk gene for future research

    Visual Study of Ex-Pin Phenomena for SFR with Metal Fuel Under Initial Phase of Severe Accidents by using Simulants

    No full text
    In the present Korean sodium-cooled fast reactor (SFR) program, early dispersion of the molten metal fuel within a subchannel is suggested as an inherent safety strategy in the initiating phase of a hypothetical core disruptive accident (HCDA). This safety strategy provides a negative reactivity driven by the melt dispersion; therefore, it could reduce the possibility of occurrence of a severe recriticality event. In the initiating phase, the melt could be injected into the subchannel horizontally by the internal pressure of the fuel pin. Complex phenomena occur during intermixing of the melt with the coolant after the horizontal injection of the melt. It is rather difficult to understand the several combined mechanisms that occur that are related to the dispersion and fragmentation of the melt. Thus, it seems worthwhile to study the horizontal injection of melt at lower temperatures, which could help to observe the dispersion phenomenon and understand the fragmentation mechanism. In this work, for a parametric study, tests were performed under structural conditions, coolant void conditions, and boiling conditions. As a result, in some cases, the injected molten materials were stuck around the injection hole. On the other hand, the molten materials were dispersed upward sufficiently well under the boiling condition when R123 was used as the coolant. The built-up vapor pressure was found to be one of the driving forces for the upward dispersion of the molten materials.clos
    corecore