38 research outputs found
07211 Abstracts Collection -- Exact, Approximative, Robust and Certifying Algorithms on Particular Graph Classes
From May 20 to May 25, 2007, the Dagstuhl Seminar 07211 ``Exact, Approximative, Robust and Certifying Algorithms on Particular Graph Classes\u27\u27 was held
in the International Conference and Research Center (IBFI), Schloss Dagstuhl.
During the seminar, several participants presented their current
research, and ongoing work and open problems were discussed. Abstracts of
the presentations given during the seminar as well as abstracts of
seminar results and ideas are put together in this paper. The first section
describes the seminar topics and goals in general.
Links to extended abstracts or full papers are provided, if available
04221 Abstracts Collection -- Robust and Approximative Algorithms on Particular Graph Classes
From 23.05.04 to 28.05.04, the Dagstuhl Seminar
04221 ``Robust and Approximative Algorithms on Particular Graph Classes\u27\u27 was held
in the International Conference and Research Center (IBFI),
Schloss Dagstuhl.
During the seminar, several participants presented their current
research, and ongoing work and open problems were discussed. Abstracts of
the presentations given during the seminar as well as abstracts of
seminar results and ideas are put together in this paper. The first section
describes the seminar topics and goals in general.
Links to extended abstracts or full papers are provided, if available
Double Threshold Digraphs
A semiorder is a model of preference relations where each element x is associated with a utility value alpha(x), and there is a threshold t such that y is preferred to x iff alpha(y) - alpha(x) > t. These are motivated by the notion that there is some uncertainty in the utility values we assign an object or that a subject may be unable to distinguish a preference between objects whose values are close. However, they fail to model the well-known phenomenon that preferences are not always transitive. Also, if we are uncertain of the utility values, it is not logical that preference is determined absolutely by a comparison of them with an exact threshold. We propose a new model in which there are two thresholds, t_1 and t_2; if the difference alpha(y) - alpha(x) is less than t_1, then y is not preferred to x; if the difference is greater than t_2 then y is preferred to x; if it is between t_1 and t_2, then y may or may not be preferred to x. We call such a relation a (t_1,t_2) double-threshold semiorder, and the corresponding directed graph G = (V,E) a (t_1,t_2) double-threshold digraph. Every directed acyclic graph is a double-threshold digraph; increasing bounds on t_2/t_1 give a nested hierarchy of subclasses of the directed acyclic graphs. In this paper we characterize the subclasses in terms of forbidden subgraphs, and give algorithms for finding an assignment of utility values that explains the relation in terms of a given (t_1,t_2) or else produces a forbidden subgraph, and finding the minimum value lambda of t_2/t_1 that is satisfiable for a given directed acyclic graph. We show that lambda gives a useful measure of the complexity of a directed acyclic graph with respect to several optimization problems that are NP-hard on arbitrary directed acyclic graphs
Ordered Vertex Partitioning
A transitive orientation of a graph is an orientation of the edges that produces a transitive digraph. The modular decomposition of a graph is a canonical representation of all of its modules. Finding a transitive orientation and finding the modular decomposition are in some sense dual problems. In this paper, we describe a simple O(n + m \log n) algorithm that uses this duality to find both a transitive orientation and the modular decomposition. Though the running time is not optimal, this algorithm is much simpler than any previous algorithms that are not Ω (n^2). The best known time bounds for the problems are O(n+m) but they involve sophisticated techniques
Recognition of some perfectly orderable graph classes
AbstractThis paper presents new algorithms for recognizing several classes of perfectly orderable graphs. Bipolarizable and P4-simplicial graphs are recognized in O(n3.376) time, improving the previous bounds of O(n4) and O(n5), respectively. Brittle and semi-simplicial graphs are recognized in O(n3) time using a randomized algorithm, and O(n3log2n) time if a deterministic algorithm is required. The best previous time bound for recognizing these classes of graphs is O(m2). Welsh–Powell opposition graphs are recognized in O(n3) time, improving the previous bound of O(n4). HHP-free graphs and maxibrittle graphs are recognized in O(mn) and O(n3.376) time, respectively
Isomorphism of graph classes related to the circular-ones property
We give a linear-time algorithm that checks for isomorphism between two 0-1
matrices that obey the circular-ones property. This algorithm leads to
linear-time isomorphism algorithms for related graph classes, including Helly
circular-arc graphs, \Gamma-circular-arc graphs, proper circular-arc graphs and
convex-round graphs.Comment: 25 pages, 9 figure
Efficient graph representations
The book deals with questions which arise from storing a graph in a computer. Different classes of graphs admit different forms of computer representations, and focusing on the representations gives a new perspective on a number of problems. For a variety of classes of graphs, the book considers such questions as existence of good representations, algorithms for finding representations, questions of characterizations in terms of representation, and how the representation affects the complexity of optimization problems. General models of efficient computer representations are also considered.