47 research outputs found

    Economic impacts of climate change on water resources in the coterminous United States

    Get PDF
    A national-scale simulation-optimization model was created to generate estimates of economic impacts associated with changes in water supply and demand as influenced by climate change. Water balances were modeled for the 99 assessment sub-regions, and are presented for 18 water resource regions in the United States. Benefit functions are developed for irrigated agriculture, municipal and domestic water use, commercial and industrial water use, and hydroelectric power generation. Environmental flows below minimal levels required for environmental needs are assessed a penalty. As a demonstration of concept for the model, future climate is projected using a climate model ensemble for two greenhouse gas (GHG) emissions scenarios: a business-as-usual (BAU) scenario in which no new GHG controls are implemented, and an exemplary mitigation policy (POL) scenario in which future GHG emissions are mitigated. Damages are projected to grow less during the 21st century under the POL scenario than the BAU scenario. The largest impacts from climate change are projected to be on non-consumptive uses (e.g., environmental flows and hydropower) and relatively lower-valued consumptive uses (e.g., agriculture), as water is reallocated during reduced water availability conditions to supply domestic, commercial, and industrial uses with higher marginal values. Lower GHG concentrations associated with a mitigation policy will result in a smaller rise in temperature and thus less extensive damage to some water resource uses. However, hydropower, environmental flow penalty, and agriculture were shown to be sensitive to the change in runoff as well.United States. Environmental Protection Agency. Office of Atmospheric Programs (Contract #EP-W-07-072

    Joint effects of storm surge and sea-level rise on US Coasts: new economic estimates of impacts, adaptation, and benefits of mitigation policy

    Get PDF
    Recent literature, the US Global Change Research Program’s National Climate Assessment, and recent events, such as Hurricane Sandy, highlight the need to take better account of both storm surge and sea-level rise (SLR) in assessing coastal risks of climate change. This study combines three models—a tropical cyclone simulation model; a storm surge model; and a model for economic impact and adaptation—to estimate the joint effects of storm surge and SLR for the US coast through 2100. The model is tested using multiple SLR scenarios, including those incorporating estimates of dynamic ice-sheet melting, two global greenhouse gas (GHG) mitigation policy scenarios, and multiple general circulation model climate sensitivities. The results illustrate that a large area of coastal land and property is at risk of damage from storm surge today; that land area and economic value at risk expands over time as seas rise and as storms become more intense; that adaptation is a cost-effective response to this risk, but residual impacts remain after adaptation measures are in place; that incorporating site-specific episodic storm surge increases national damage estimates by a factor of two relative to SLR-only estimates, with greater impact on the East and Gulf coasts; and that mitigation of GHGs contributes to significant lessening of damages. For a mid-range climate-sensitivity scenario that incorporates dynamic ice sheet melting, the approach yields national estimates of the impacts of storm surge and SLR of 990billionthrough2100(netofadaptation,cumulativeundiscounted2005990 billion through 2100 (net of adaptation, cumulative undiscounted 2005); GHG mitigation policy reduces the impacts of the mid-range climate-sensitivity estimates by 84to84 to 100 billion.United States. Environmental Protection Agency. Climate Change Division (Contract EP-D-09-054)United States. Environmental Protection Agency. Climate Change Division (Contract EP-BPA-12-H-0024

    Quantifying and monetizing potential climate change policy impacts on terrestrial ecosystem carbon storage and wildfires in the United States

    Get PDF
    This paper develops and applies methods to quantify and monetize projected impacts on terrestrial ecosystem carbon storage and areas burned by wildfires in the contiguous United States under scenarios with and without global greenhouse gas mitigation. The MC1 dynamic global vegetation model is used to develop physical impact projections using three climate models that project a range of future conditions. We also investigate the sensitivity of future climates to different initial conditions of the climate model. Our analysis reveals that mitigation, where global radiative forcing is stabilized at 3.7 W/m2 in 2100, would consistently reduce areas burned from 2001 to 2100 by tens of millions of hectares. Monetized, these impacts are equivalent to potentially avoiding billions of dollars (discounted) in wildfire response costs. Impacts to terrestrial ecosystem carbon storage are less uniform, but changes are on the order of billions of tons over this time period. The equivalent social value of these changes in carbon storage ranges from hundreds of billions to trillions of dollars (discounted). The magnitude of these results highlights their importance when evaluating climate policy options. However, our results also show national outcomes are driven by a few regions and results are not uniform across regions, time periods, or models. Differences in the results based on the modeling approach and across initializing conditions also raise important questions about how variability in projected climates is accounted for, especially when considering impacts where extreme or threshold conditions are important.United States. Environmental Protection Agency. Climate Change Division (Contract EP-BPA-12-H-0024

    A modeling tool to evaluate regional coral reef responses to changes in climate and ocean chemistry

    Get PDF
    This is the published version.We developed a spreadsheet-based model for the use of managers, conservationists, and biologists for projecting the effects of climate change on coral reefs at local-to-regional scales. The COMBO (Coral Mortality and Bleaching Output) model calculates the impacts to coral reefs from changes in average SST and CO2 concentrations, and from high temperature mortality (bleaching) events. The model uses a probabilistic assessment of the frequency of high temperature events under a future climate to address scientific uncertainties about potential adverse effects. COMBO offers data libraries and default factors for three selected regions (Hawai’i, Great Barrier Reef, and Caribbean), but it is structured with user-selectable parameter values and data input options, making possible modifications to reflect local conditions or to incorporate local expertise. Preliminary results from sensitivity analyses and simulation examples for Hawai’i demonstrate the relative importance of high temperature events, increased average temperature, and increased CO2 concentration on the future status of coral reefs; illustrate significant interactions among variables; and allow comparisons of past environmental history with future predictions

    Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Get PDF
    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7billionto32.7 billion to 54.5 billion over the period 2015–2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.United States. Environmental Protection Agency. Climate Change Division (Contract EP-BPA-12-H-0023, Call Order EP-B13H-00143

    Climate change, riverine flood risk and adaptation for the conterminous United States

    No full text
    Riverine floods are among the most costly natural disasters in the United States, and floods are generally projected to increase in frequency and magnitude with climate change. Faced with these increasing risks, improved information is needed to direct limited resources toward the most cost-effective adaptation actions available. Here we leverage a newly available flood risk dataset for residential properties in the conterminous United States to calculate expected annual damages to residential structures from inland/riverine flooding at a property-level; the cost of property-level adaptations to protect against future flood risk; and the benefits of those adaptation investments assuming both static and changing climate conditions. Our modeling projects that in the absence of adaptation, nationwide damages from riverine flooding will increase by 20%–30% under high levels of warming. Floodproofing, elevation and property acquisition can each be cost-effective adaptations in certain situations, depending on the desired return on investment (i.e. benefit cost ratio), the discount rate, and the assumed rate of climate change. Incorporation of climate change into the benefit-cost calculation increases the number of properties meeting any specified benefit-cost threshold, as today’s investments protect against an increasing frequency of future floods. However, because future expected damages are discounted relative to present-day, the adaptation decisions made based on a static climate assumption are very similar to the decisions made when climate change is considered. If the goal is to optimize adaptation decision making, a focus on quantifying present-day flood risk is therefore at least as important as understanding how those risks might change under a warming climate

    Effects of Greenhouse Gas Mitigation on Drought Impacts in the United States

    No full text
    The authors present a method for analyzing the economic benefits to the United States resulting from changes in drought frequency and severity due to global greenhouse gas (GHG) mitigation. The method begins by constructing reduced-form models of the effect of drought on agriculture and reservoir recreation in the contiguous United States. These relationships are then applied to drought projections based on two climate stabilization scenarios and two twenty-first-century time periods. Drought indices are sector specific and include both the standardized precipitation index and the Palmer drought severity index. It is found that the modeled regional effects of drought on each sector are negative, almost always statistically significant, and often large in magnitude. These results confirm that drought has been an important driver of historical reductions in economic activity in these sectors. Comparing a reference climate scenario to two GHG mitigation scenarios in 2050 and 2100, the authors find that, for the agricultural sector, mitigation reduces both drought incidence and damages through its effects on temperature and precipitation, despite regional differences in the sign and magnitude of effects under certain model scenarios. The current annual damages of drought across all sectors have been estimated at 6–6–8 billion (U.S. dollars), but this analysis shows that average annual benefits of GHG mitigation to the U.S. agricultural sector alone reach 980millionby2050andupwardof980 million by 2050 and upward of 2.2 billion by 2100. Benefits to reservoir recreation depend on reservoir location and data availability. Economic benefits of GHG mitigation are highest in the southwestern United States, where drought frequency is projected to increase most dramatically in the absence of GHG mitigation policies.United States. Environmental Protection Agency. Climate Change Division (Contract EP-D-09-054
    corecore