98 research outputs found

    Potential impact of unblinding on observed treatment effects in Alzheimer's disease trials

    Get PDF
    INTRODUCTION: Adverse effects of monoclonal antibodies against amyloid beta are common, and may affect validity of randomized controlled trials (RCTs) through unblinding of participants.METHODS: We used observations from published phase 3 RCTs in Alzheimer's disease to calculate the magnitude of unblinding effects on cognition that would be required to explain observed cognitive benefits in RCTs. RESULTS: In trials of lecanemab, aducanumab, and donanemab, incidence of amyloid-related imaging abnormalities with active treatment ranged from 22% to 44%, the vast majority of which presumably led to unblinding. Effects of unblinding on the Clinical Dementia Rating Sum of Boxes required to fully explain observed drug effects ranged from 1.1 point (95% confidence interval: 0.2–2.0) with aducanumab, to 3.3 points (2.1–4.4) with donanemab and 3.7 points (2.0–5.6) with lecanemab. Infusion-related reactions were common, with potential unblinding effects particularly for lecanemab. Similar patterns were observed for the Alzheimer's Disease Assessment Scale Cognitive subscale. DISCUSSION: Psychological treatment effects due to unblinding may explain a substantial share of observed treatment effects in RCTs.</p

    Target trial emulation: teaching epidemiology and beyond

    Get PDF
    Observational epidemiology is continually held to thestandard of randomized trials. A typical epidemiology article references previous trials in the introduction (or reasons why trials are not feasible) and, when possible, compares the results to previous trials in the discussion. When the results from an observational study and trial disagree, we nearly always begin by questioning the former. Curiously, the methods section of an observational study — an undeniably crucial part of an article — rarely references trial methods or designs. Explicit target trial emulation aims to remedy this

    Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates

    Get PDF
    Mendelian randomization uses genetic variants to make causal inferences about a modifiable exposure. Subject to a genetic variant satisfying the instrumental variable assumptions, an association between the variant and outcome implies a causal effect of the exposure on the outcome. Complications arise with a binary exposure that is a dichotomization of a continuous risk factor (for example, hypertension is a dichotomization of blood pressure). This can lead to violation of the exclusion restriction assumption: the genetic variant can influence the outcome via the continuous risk factor even if the binary exposure does not change. Provided the instrumental variable assumptions are satisfied for the underlying continuous risk factor, causal inferences for the binary exposure are valid for the continuous risk factor. Causal estimates for the binary exposure assume the causal effect is a stepwise function at the point of dichotomization. Even then, estimation requires further parametric assu

    Attention-deficit hyperactivity disorder symptoms and brain morphology:Addressing potential selection bias with inverse probability weighting

    Get PDF
    The goal of this study was to examine what happens to established associations between attention deficit hyperactivity disorder (ADHD) symptoms and cortical surface and thickness regions once we apply inverse probability of censoring weighting (IPCW) to address potential selection bias. Moreover, we illustrate how different factors that predict participation contribute to potential selection bias. Participants were 9- to 11-year-old children from the Generation R study (N = 2707). Cortical area and thickness were measured with magnetic resonance imaging (MRI) and ADHD symptoms with the Child Behavior Checklist. We examined how associations between ADHD symptoms and brain morphology change when we weight our sample back to either follow-up (ages 9–11), baseline (cohort at birth), or eligible (population of Rotterdam at time of recruitment). Weights were derived using IPCW or raking and missing predictors of participation used to estimate weights were imputed. Weighting analyses to baseline and eligible increased beta coefficients for the middle temporal gyrus surface area, as well as fusiform gyrus cortical thickness. Alternatively, the beta coefficient for the rostral anterior cingulate decreased. Removing one group of variables used for estimating weights resulted in the weighted regression coefficient moving closer to the unweighted regression coefficient. In addition, we found considerably different beta coefficients for most surface area regions and all thickness measures when we did not impute missing covariate data. Our findings highlight the importance of using inverse probability weighting (IPW) in the neuroimaging field, especially in the context of mental health-related research. We found that including all variables related to exposure-outcome in the IPW model and combining IPW with multiple imputations can help reduce bias. We encourage future psychiatric neuroimaging studies to define their target population, collect information on eligible but not included participants and use inverse probability of censoring weighting (IPCW) to reduce selection bias.</p

    Attention-deficit hyperactivity disorder symptoms and brain morphology:Addressing potential selection bias with inverse probability weighting

    Get PDF
    The goal of this study was to examine what happens to established associations between attention deficit hyperactivity disorder (ADHD) symptoms and cortical surface and thickness regions once we apply inverse probability of censoring weighting (IPCW) to address potential selection bias. Moreover, we illustrate how different factors that predict participation contribute to potential selection bias. Participants were 9- to 11-year-old children from the Generation R study (N = 2707). Cortical area and thickness were measured with magnetic resonance imaging (MRI) and ADHD symptoms with the Child Behavior Checklist. We examined how associations between ADHD symptoms and brain morphology change when we weight our sample back to either follow-up (ages 9–11), baseline (cohort at birth), or eligible (population of Rotterdam at time of recruitment). Weights were derived using IPCW or raking and missing predictors of participation used to estimate weights were imputed. Weighting analyses to baseline and eligible increased beta coefficients for the middle temporal gyrus surface area, as well as fusiform gyrus cortical thickness. Alternatively, the beta coefficient for the rostral anterior cingulate decreased. Removing one group of variables used for estimating weights resulted in the weighted regression coefficient moving closer to the unweighted regression coefficient. In addition, we found considerably different beta coefficients for most surface area regions and all thickness measures when we did not impute missing covariate data. Our findings highlight the importance of using inverse probability weighting (IPW) in the neuroimaging field, especially in the context of mental health-related research. We found that including all variables related to exposure-outcome in the IPW model and combining IPW with multiple imputations can help reduce bias. We encourage future psychiatric neuroimaging studies to define their target population, collect information on eligible but not included participants and use inverse probability of censoring weighting (IPCW) to reduce selection bias.</p

    Invited Commentary:Conducting and Emulating Trials to Study Effects of Social Interventions

    Get PDF
    All else being equal, if we had 1 causal effect we wished to estimate, we would conduct a randomized trial with a protocol that mapped onto that causal question, or we would attempt to emulate that target trial with observational data. However, studying the social determinants of health often means there are not just 1 but several causal contrasts of simultaneous interest and importance, and each of these related but distinct causal questions may have varying degrees of feasibility in conducting trials. With this in mind, we discuss challenges and opportunities that arise when conducting and emulating such trials. We describe designing trials with the simultaneous goals of estimating the intention-to-treat effect, the per-protocol effect, effects of alternative protocols or joint interventions, effects within subgroups, and effects under interference, and we describe ways to make the most of all feasible randomized trials and emulated trials using observational data. Our comments are grounded in the study results of Courtin et al. (Am J Epidemiol. 2022;191(8):1444–1452)

    From complexity to clarity:how directed acyclic graphs enhance the study design of systematic reviews and meta-analyses

    Get PDF
    While frameworks to systematically assess bias in systematic reviews and meta-analyses (SRMAs) and frameworks on causal inference are well established, they are less frequently integrated beyond the data analysis stages. This paper proposes the use of Directed Acyclic Graphs (DAGs) in the design stage of SRMAs. We hypothesize that DAGs created and registered a priori can offer a useful approach to more effective and efficient evidence synthesis. DAGs provide a visual representation of the complex assumed relationships between variables within and beyond individual studies prior to data analysis, facilitating discussion among researchers, guiding data analysis, and may lead to more targeted inclusion criteria or set of data extraction items. We illustrate this argument through both experimental and observational case examples.</p
    • …
    corecore