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Abstract
Mendelian randomization uses genetic variants to make causal inferences about a modifiable exposure. Subject to a genetic

variant satisfying the instrumental variable assumptions, an association between the variant and outcome implies a causal

effect of the exposure on the outcome. Complications arise with a binary exposure that is a dichotomization of a continuous

risk factor (for example, hypertension is a dichotomization of blood pressure). This can lead to violation of the exclusion

restriction assumption: the genetic variant can influence the outcome via the continuous risk factor even if the binary

exposure does not change. Provided the instrumental variable assumptions are satisfied for the underlying continuous risk

factor, causal inferences for the binary exposure are valid for the continuous risk factor. Causal estimates for the binary

exposure assume the causal effect is a stepwise function at the point of dichotomization. Even then, estimation requires

further parametric assumptions. Under monotonicity, the causal estimate represents the average causal effect in ‘com-

pliers’, individuals for whom the binary exposure would be present if they have the genetic variant and absent otherwise.

Unlike in randomized trials, genetic compliers are unlikely to be a large or representative subgroup of the population.

Under homogeneity, the causal effect of the exposure on the outcome is assumed constant in all individuals; rarely a

plausible assumption. We here provide methods for causal estimation with a binary exposure (although subject to all the

above caveats). Mendelian randomization investigations with a dichotomized binary exposure should be conceptualized in

terms of an underlying continuous variable.
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Mendelian randomization is the use of genetic variants as

instrumental variables to test for or estimate the causal

effect of a risk factor (referred to here as an exposure) on

an outcome using observational data [11, 12]. The primary

objective of Mendelian randomization is to find modifiable

exposures that are worthwhile therapeutic targets and can

be intervened on to improve health outcomes. An instru-

mental variable must be associated with the exposure of

interest (relevance), only affects the outcome through the

exposure (exclusion restriction), and does not share any

causes with the outcome (exchangeability). Recently, sev-

eral Mendelian randomization studies have employed bin-

ary measures as the exposure variable. Examples include

analyses assessing the causal effect of cannabis initiation

on schizophrenia (and of schizophrenia on cannabis initi-

ation) [14, 24], and of diabetes status on endometrial

cancer [17]. In this short manuscript, we discuss issues

relating to causal estimation in the Mendelian randomiza-

tion setting with a binary exposure. For ease of presenta-

tion, we initially assume a single genetic variant is used as

an instrumental variable; this restriction is later relaxed.

The intended primary audience of this manuscript is

Mendelian randomization practitioners, and the aim of the

manuscript is to communicate the practical consequences

of these methodological issues for Mendelian randomiza-

tion investigations. As such, we focus on methods and

approaches that are likely to be the most relevant to sce-

narios that are common in applied practice. In particular,
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we focus on methods that can be performed using sum-

marized data, which comprise genetic associations with the

exposure estimated using regression methods, that are

routinely reported by large consortia [9]. Although our

focus is on practitioners, we also provide technical asides

and references for methodologically-focused readers.

Random assignment in a trial as a paradigm
instrumental variable

Consider a double-blind, placebo-controlled randomized

trial with two time-fixed treatment arms (referred to as

treatment and control) and complete follow-up data. An

intention-to-treat effect estimate is typically reported: the

causal effect of allocation to treatment as opposed to

control. When there is substantial non-compliance, inves-

tigators may be interested in testing whether the treatment

itself has an effect on the outcome (as opposed to simply

allocation to treatment), or in estimating the causal effect

of the treatment itself. Testing for a treatment or ‘per-

protocol’ effect can be achieved through the intention-to-

treat analysis: unless random assignment somehow affects

the outcome directly (e.g., because blinding is broken or a

placebo effect is present), an association between treatment

allocation and the outcome will only arise if the treatment

has a causal effect on the outcome [13]. Estimating the

average treatment effect in the full study population further

requires additional homogeneity conditions [4, 15, 25];

sufficient conditions are linearity of the instrumental vari-

able-exposure, instrumental variable-outcome and expo-

sure–outcome relationships with no effect heterogeneity.

Without additional conditions, only bounds for the average

treatment effect are obtainable [5]. These bounds can also

be used to assess the validity of a genetic variant as an

instrumental variable [19, 21], although this approach is

rarely informative in practice, and alternative ways of

assessing instrument validity (such as understanding the

biological role of the genetic variant, and assessing its

associations with known confounders) are more likely to be

fruitful in practice [10].

As an alternative to estimating the average treatment

effect in the full population, investigators often estimate an

effect in a subgroup of the population under a weaker

assumption. Specifically, we consider the subgroup of the

population consisting of ‘compliers’—individuals who

would receive the treatment if allocated to treatment, and

would not receive treatment if allocated to not receive

treatment. The effect in this subgroup can be estimated

under the assumption that there are no defiers—individuals

who would only take treatment if randomly allocated not to

do so, and who would not take treatment if allocated to take

it [2]. This is known as the monotonicity assumption—

allocation to taking the treatment can only increase the

value of the exposure, not decrease it. This effect, which

can be estimated using standard instrumental variable

techniques, is known as the local average treatment effect

(LATE) or the complier average causal effect (CACE) in

the literature [27]. Of note, we cannot identify individual

compliers as we cannot see individuals’ treatment levels

under both levels of treatment allocation. However, it is

possible to identify the proportion of the study population

who are compliers, and to describe relative characteristics

of the compliers compared to non-compliers using mea-

sured baseline covariates [3]. In well-designed randomized

trials, compliers are likely to be common, and the

assumption that there are no defiers is often considered

reasonable.

Who are the genetic ‘compliers’?

Monotonicity in the context of Mendelian randomization

means that increasing the number of effect alleles for an

individual can only increase the exposure from absent to

present (or leave it constant), and can never decrease it.

(We here define the effect allele as the exposure-increasing

allele without loss of generality.) The analogue of ‘com-

pliers’ in Mendelian randomization are individuals who

would have the exposure present if they possess an expo-

sure-increasing allele, but would not otherwise. As genetic

variants tend to have small effects on phenotypic variables,

such compliers are likely to be uncommon.

This means that the group of genetic compliers is not

likely to be representative of the general population. Also,

the group of compliers may well differ greatly between

different study populations. As an example, folate defi-

ciency has been hypothesized as a causal risk factor for

coronary heart disease [16]. The complier population (and

therefore the instrumental variable estimate) would differ

greatly in a population where large numbers of people are

borderline folate deficient compared with a population

where relatively few people are folate deficient. (A similar

problem would occur in randomized trials conducted in

different populations.) The analogous assumption in Men-

delian randomization to the ‘no defiers’ assumption is that

increases in the genotype variable would lead to increases

(or no change) in the exposure for all individuals in the

population (or equivalently, decreases or no change in the

exposure for all individuals) [15]. With a genetic variant

that takes multiple values, the equivalent assumption is that

the exposure is a non-decreasing (or non-increasing)

function of the genetic variant. In this case (and in the case

with multiple genetic variants), the instrumental variable

estimate is a weighted average of LATEs [1].
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In the context of RCTs, even if individual compliers

cannot be identified, the subgroup of compliers may be of

interest either because it represents a large or representative

subgroup of the population, or due to patterns of non-

compliance in the trial being anticipated to be repeated

outside the trial setting. However, in Mendelian random-

ization, the subgroup of genetic ‘compliers’ is unlikely to

represent those individuals in the population who would

respond to a treatment that influences the target exposure,

particularly if the treatment has a greater effect on the risk

factor than the genetic variant. Hence, under the ‘no defi-

ers’ assumption, the interpretation of a causal estimate in a

Mendelian randomization investigation in which the

instrumental variable assumptions are satisfied is that of an

average causal effect in those individuals whose exposure

status would vary depending on whether they have a par-

ticular genetic variant or not. We additionally note that the

subgroup of genetic compliers would differ between

genetic variants. This provides yet another reason why

causal estimates based on different genetic variants may

vary even if all the genetic variants are valid instruments.

What is the true risk factor underlying
the exposure?

The above interpretation assumes that the instrumental

variable assumptions are satisfied. These assumptions

imply that the only influence of the instrumental variable

on the outcome is via the exposure—if the instrumental

variable changes, but the exposure stays the same, then the

outcome should not change. However, for most binary

exposures used in Mendelian randomization investigations,

there is an underlying continuous risk factor for which the

binary variable is a dichotomization. As a simple example,

the binary exposure hypertension is a dichotomization of

the continuous risk factor blood pressure. In more complex

examples, an underlying continuous latent variable can be

hypothesized even if it cannot be measured, such as a

continuous spectrum of sub-clinical mental health prob-

lems for the binary exposure schizophrenia.

If the binary exposure is a dichotomization of a con-

tinuous risk factor, then the instrumental variable

assumptions are likely to be violated. For the example of

hypertension, if elevated blood pressure is a causal risk

factor for a particular outcome then genetic variants that

are associated with blood pressure will be associated with

the outcome even in a population where no-one suffers

from clinically-defined hypertension. Hence, changes in

the genetic variants will lead to increases in blood pressure

and consequently to changes in the outcome even if the

exposure status for hypertension remains fixed for all

individuals in the population. An instrumental variable for

a continuous exposure can only be an instrumental variable

for the dichotomization of the exposure if the exposure–

outcome causal relationship is a strict stepwise threshold at

the point of dichotomization (in which case the dichot-

omized exposure is a representation of the true risk factor).

However, provided that the instrumental variable assump-

tions are satisfied for the continuous risk factor, testing for

an association with the outcome is still a valid test of the

causal null hypothesis for the binary exposure.

There are two main consequences of this. First, such a

Mendelian randomization study should be conceptualized

as an investigation into the (possibly latent) underlying

continuous risk factor, rather than the binary

dichotomization of this variable. At minimum, the instru-

mental variable assumptions should be assessed with the

continuous risk factor in mind. Second, a causal estimate

from a Mendelian randomization investigation with a

dichotomized binary exposure does not have a clear

interpretation due to the binary exposure variable not

capturing the true causal relationship. There are several

reasons why a Mendelian randomization estimate may

differ from the effect of an intervention even for a con-

tinuous exposure (for example, genetic variants have long-

term influences acting from the beginning of life, whereas

interventions are more short-term and are applied to mature

individuals) [8, 22]. With a binary exposure, these concerns

are even greater.

Causal estimation with a binary exposure

Because of these issues, several authors have recom-

mended that Mendelian randomization investigations

should only test the causal null hypothesis, rather than

attempt to calculate a causal estimate [13, 23]. With a

single genetic variant, this can be achieved by testing for an

association between the variant and the outcome. With

multiple genetic variants, the most efficient test of the

causal null hypothesis is achieved by the IV estimate

(under the homogeneity assumptions, the two-stage least

squares estimate, or equivalently the inverse-variance

weighted estimate, is the optimally efficient combination of

the instruments for testing for a causal effect [26])—hence

we may want to perform IV estimation to test the causal

null even if the IV estimate is regarded as a test statistic

and does not have a clear interpretation as a causal effect.

Suppose that we want to calculate a causal effect with a

binary exposure, under the assumption that the exposure

has a stepwise effect on the outcome (that is, it truly is a

dichotomous exposure). This may be because we truly

believe in the homogeneity assumptions, or we truly

believe in the monotonicity assumption and regard the

genetic compliers as a worthwhile subgroup of the
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population in which to estimate an average causal effect.

Or, more likely, because a causal effect estimate is required

for pragmatic reasons, such as to perform a power calcu-

lation or to inform policymakers of the expected impact of

intervention on the exposure. Other reasons for estimating

a causal parameter include efficient testing of the causal

null hypothesis with multiple candidate instrumental vari-

ables, and using a robust method with multiple genetic

variants (such as the MR-Egger method [6] or weighted

median method [7]—these methods make weaker

assumptions, not requiring all genetic variants to satisfy the

instrumental variable assumptions). If the binary exposure

is a dichotomization of a continuous risk factor, then power

calculations are likely to be conservative, as the effect of

the genetic variant on the outcome will not be fully cap-

tured by the binary exposure.

Two options for causal estimation are: (1) estimating the

effect on the outcome per (say) 1% absolute increase in the

probability of the exposure; (2) estimating the effect on the

outcome per (say) doubling of the probability (or odds) of

the exposure. We concentrate on estimation methods based

on regression (usually linear or logistic) for several rea-

sons. First, often researchers perform their analyses using

summarized association estimates—beta-coefficients from

regression analyses of the exposure and outcome on a

genetic variant—and do not have access to individual-level

data. These beta-coefficients represent the average change

in the trait (exposure or outcome) per additional copy of the

effect allele. Secondly, these approaches result in causal

estimates with a simple and relevant interpretation, and

which can be compared to estimates in the literature from

other analytical approaches. Thirdly, often there are tech-

nical restrictions on the data analysis—for example, it may

be necessary to fit a mixed model to account for relatedness

between individuals, to adjust for several principal com-

ponents of ancestry, or to provide a coordinated approach

to analysis across different datasets. These restrictions are

easiest to accommodate in a regression framework. These

estimation procedures require strict linearity and homo-

geneity assumptions; full details are available elsewhere

[13, 15]. The parametric assumptions for these two options

are mutually incompatible. Additionally, regression coef-

ficients will generally be variation dependent on the base-

line risk, a nuisance parameter [20]. If individual-level data

are available, then alternative approaches to estimation can

be taken [4, 25].

If the genetic associations with the exposure are esti-

mated using linear regression, then they represent absolute

changes in the prevalence of the exposure. This enables

estimation of the causal effect of an intervention in the

prevalence of the exposure on an absolute scale. It is

sensible to scale the causal effect to consider a modest

increase in the prevalence of the exposure (say a 1% or a

10% increase), as a unit increase would represent the

average causal effect of a population intervention from 0%

prevalence of the exposure to 100% prevalence—an

unrealistic intervention in practice. However, absolute

associations with a binary variable do not make sense in

case-control settings (where cases are those with the

exposure), as they depend on the ratio of cases to controls

chosen by the investigator.

If the genetic associations with the exposure are esti-

mated using logistic regression, then they represent log

odds ratios. The causal estimate would then represent the

change in the outcome per unit change in the exposure on

the log odds scale. A unit increase in the log odds of a

variable corresponds to a 2.72 (¼ exp 1)-fold multiplicative

increase in the odds of the variable. If the exposure is rare

then the odds of the exposure is approximately equal to the

probability of the exposure. The causal estimate represents

the average change in the outcome per 2.72-fold increase in

the prevalence of the exposure (for example, an increase in

the exposure prevalence from 1 to 2.72%). It may be more

interpretable to think instead about the average change in

the outcome per doubling (2-fold increase) in the preva-

lence of the exposure. This can be obtained by multiplying

the causal estimate by 0.693 (¼ loge 2).

Discussion

In this short manuscript, we have discussed statistical

issues for Mendelian randomization with a binary expo-

sure. A summary of the arguments made in the paper is

provided as Fig. 1. Under the more plausible assumption of

monotonicity, the estimate from a Mendelian randomiza-

tion study with a binary exposure represents the average

causal effect in ‘compliers’; the subgroup of individuals for

whom the presence or absence of the genetic variant used

as an instrument determines whether individuals have the

exposure present or not. Under the less plausible assump-

tion of homogeneity, the estimate of the causal effect only

makes sense if the effect of the exposure on the outcome

has a strict stepwise form—only changes in whether the

binary exposure is present or absent will affect the out-

come. If the binary exposure is a dichotomization of a

continuous variable, then the causal estimate does not have

a clear interpretation. In such a case, causal inferences will

only be valid provided that the instrumental variable

assumptions are satisfied for the continuous risk factor—in

particular, if the effect of the genetic variant on the out-

come is completely mediated via the continuous risk factor.

However, as the effect of the genetic variant on the out-

come is not completely mediated via the binary exposure,

power calculations are likely to be conservative. Addi-

tionally, no particular significance should be assigned to
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the point of dichotomization of a continuous risk factor—if

a Mendelian randomization investigation suggests that

hypertension affects a disease outcome, clinical interven-

tions should not focus specifically on lowering blood

pressure above a certain cutpoint, or on individuals with

blood pressure values close to that cutpoint.

We have concentrated here on issues that are specific to

the use of a binary exposure variable. There are several

other considerations in a Mendelian randomization inves-

tigation, such as choice of genetic variants, validity of the

instrumental variable assumptions, measurement error in

the exposure, and similarity between samples in a two-

sample Mendelian randomization analysis (where the

genetic associations with the exposure and the genetic

associations with the outcome are estimated in different

datasets). While classical measurement error in the expo-

sure does not affect asymptotic estimates from instrumental

variable analysis for valid instruments [18], it will affect

estimates with a dichotomized exposure variable, as mea-

surement error in the continuous risk factor will lead to

misclassification of the binary exposure and hence attenu-

ation of the genetic association with the exposure (but not

in the genetic associations with the outcome). In a two-

sample setting, consistent estimation for a dichotomized

exposure requires the stepwise effect of the exposure to act

at the same level of the exposure in both populations.

Otherwise, all considerations for a Mendelian randomiza-

tion analysis with a continuous exposure are similarly

relevant for a Mendelian randomization analysis with a

binary exposure.

In summary, applying Mendelian randomization with a

binary exposure requires careful consideration. When the

binary exposure is a dichotomization of an underlying

continuous risk factor, causal assumptions should be

assessed and causal inferences should be conceptualized

with respect to the underlying continuous risk factor. Tests

for causal effects may be achieved readily without using

the exposure information, but estimation procedures for a

binary exposure require strong assumptions that are unli-

kely to be biologically plausible in common Mendelian

randomization settings.
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