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Abstract

The goal of this study was to examine what happens to established associations

between attention deficit hyperactivity disorder (ADHD) symptoms and cortical sur-

face and thickness regions once we apply inverse probability of censoring weighting

(IPCW) to address potential selection bias. Moreover, we illustrate how different fac-

tors that predict participation contribute to potential selection bias. Participants were

9- to 11-year-old children from the Generation R study (N = 2707). Cortical area and

thickness were measured with magnetic resonance imaging (MRI) and ADHD symp-

toms with the Child Behavior Checklist. We examined how associations between

ADHD symptoms and brain morphology change when we weight our sample back to

either follow-up (ages 9–11), baseline (cohort at birth), or eligible (population of Rot-

terdam at time of recruitment). Weights were derived using IPCW or raking and miss-

ing predictors of participation used to estimate weights were imputed. Weighting

analyses to baseline and eligible increased beta coefficients for the middle temporal

gyrus surface area, as well as fusiform gyrus cortical thickness. Alternatively, the beta

coefficient for the rostral anterior cingulate decreased. Removing one group of vari-

ables used for estimating weights resulted in the weighted regression coefficient

moving closer to the unweighted regression coefficient. In addition, we found consid-

erably different beta coefficients for most surface area regions and all thickness mea-

sures when we did not impute missing covariate data. Our findings highlight the

importance of using inverse probability weighting (IPW) in the neuroimaging field,

especially in the context of mental health-related research. We found that including

all variables related to exposure-outcome in the IPW model and combining IPW with

multiple imputations can help reduce bias. We encourage future psychiatric neuroim-

aging studies to define their target population, collect information on eligible but not

included participants and use inverse probability of censoring weighting (IPCW) to

reduce selection bias.
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1 | INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is among the most

commonly diagnosed neuropsychiatric disorders in childhood. The dis-

order is characterized by age-inappropriate levels of inattention

and/or hyperactivity and can have a negative effect on multiple

aspects of daily life for patients (American Psychiatric

Association, 2013). Numerous neuroimaging studies have been con-

ducted to examine possible structural brain alterations associated with

ADHD; however, many of their findings have been inconsistent or

even contradictory (Samea et al., 2019). While several explanations

exist for these inconsistencies, various forms of bias have been pro-

posed as a possible explanation for these inconsistent results, indeed

adjusting for a more comprehensive set of confounding factors

altered some associations between brain structure and ADHD symp-

toms (Dall'Aglio et al., 2022). Next to confounding bias, selection bias

(e.g., self-selection into a study or loss to follow-up) is another possi-

ble source of bias that could alter the interpretation of results.

Whether addressing selection bias could lead to more robust findings

in the context of ADHD and the brain has not been explored before.

Selection bias occurs when reasons for participation or

continuation in a study are related to the exposure and outcome

under investigation (Hernán et al., 2004). Whether self-selection or

loss to follow-up results in biased estimates depends on the specific

relationship between exposure, outcome, and participation. For

instance, in studies examining the association between child psycho-

pathology and brain morphology, children of mothers with severe psy-

chopathology might be more likely to drop out. Since this factor is

also related to the child's psychopathology and brain morphology, the

selection on this variable will likely induce selection bias. Depending

on the characteristics which are over or under-sampled, selection bias

can result in either an underestimation or overestimation of the true

effect.

Several studies have shown that participation or continuation in

studies can depend on factors like sex, socio-economic factors, health

status, or psychopathology (Howe et al., 2013). Most of these factors

are related to both ADHD and brain morphology (Russell et al., 2016).

In addition, many neuroimaging studies are often performed in highly

selected groups of individuals without a clearly defined target popula-

tion. Therefore it is likely that neuroimaging studies of ADHD are sus-

ceptible to selection bias. Despite this, studies on the relation between

ADHD symptoms and brain morphology generally do not address selec-

tion bias. The concern of selection bias can be illustrated from two

observations in the literature, one neuroimaging study showed that

changing sample composition based on socio-economic status, ethnic-

ity, and sex altered association between age and brain structure

(LeWinn et al., 2017). Another study found that associations between

several risk factors and ADHD were substantially different when cor-

rected for possible selection bias (Biele et al., 2019). However, how

selection bias potentially affects the specific relation between ADHD

symptoms and brain morphology has not yet been investigated.

A potential solution and recommended strategy for addressing

bias due to self-selection or loss to follow-up is inverse probability

weighting (IPW) (Seaman & White, 2013). This technique generates

weights as a function of the probability of ending up in the final sam-

ple used for analysis estimated using baseline information on partici-

pants, see Box 1 for a more in depth description of this method. The

ability to examine and address potential selection bias depends largely

on the information available at baseline. In this regard, prospective

cohort studies offer a great potential to evaluate and address selec-

tion bias, as well as valuable insight into neurodevelopment in the

context of ADHD. Specifically studies with a high baseline response, a

well-defined study base, and detailed baseline data on all participants

recruited into the study enable identifying predictors of participation

and are therefore important when it comes to addressing selection

bias. In order to be able to explore selection bias as thorough as possi-

ble in a real-world situation and identify many predictors of participa-

tion, this study was set in a prospective cohort study fulfilling the

abovementioned criteria.

BOX 1 Inverse probability weighting

Inverse probability weighting is a method that creates

weights to address potential biases. It was initially devel-

oped to address selection bias in surveys, as proposed by

Horvitz and Thompson (1952). The method has since then

been adapted and widely used to address confounding bias

as well, under the name inverse probability of treatment

weighting (IPTW). In this study we focus on the method

applied to address selection bias in studies with loss to

follow-up, known as inverse probability of censoring

weighting (IPCW), also sometimes referred to as inverse

probability of participation weighting, or inverse probability

of attrition weighting. This method can be applied in studies

that have enough detailed information of participants

recruited into the study available at baseline. The first step

is to select variables at baseline that are related to response

as well as the exposure outcome under study, for instance

socio-economic factors or psychopathology. These variables

are then used to estimate the probability of participation

(or the probability of not being lost to follow-up). The

weights are subsequently created by taking the inverse of

those probabilities, resulting in weights that give more

weight to individuals with a low probability of participation

compared to individuals with a high probability of participa-

tion. In this way, participants with a low probability of par-

ticipation that nonetheless end up in the final analysis

sample are given extra weight that helps them “represent”
participants who were similar but that were actually lost to

follow-up. This creates a so-called pseudo-population that

closely resembles the target population, for example, the

sample at baseline.
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This study used data from a large population-based cohort, the

Generation R study, to try to address the issue of potential selection

bias in ADHD and brain morphology. Specifically, the goal of this

study was to examine what happens to previously established associa-

tions between ADHD symptoms and cortical surface and thickness

regions once we apply inverse probability weighting. Moreover, we

illustrate how different factors that predict participation contribute to

potential selection bias.

2 | MATERIALS AND METHODS

2.1 | Study population

This study was embedded within the Generation R Study, a

population-based birth cohort in Rotterdam, the Netherlands, with

data collection spanning from fetal life until early adulthood. A total of

9901 pregnant women living in Rotterdam with an expected delivery

date between April 2002 and January 2006 were recruited, of which

9749 had a known live birth. Details of the study design have been

described elsewhere (Kooijman et al., 2016). Parents provided written

informed consent for themselves and their children. The Medical

Ethics Committee of the Erasmus MC granted ethical approval for the

study (METC-20120165). In this study we used data from the baseline

assessment (i.e., the prenatal assessment) and the assessment when

the children were between 9 and 12 years old for creating weights.

For the sample which was used for the association analysis, children

with data on ADHD symptoms and T1-weighted MRI images were

included. Participants were excluded if they had incidental findings or

if their brain scans failed processing or quality assurance procedures,

this resulted in a study population of 2707 participants (see Figure 1).

2.2 | Measures

2.2.1 | Attention problems

Children's attention problems, reported by the mother, were assessed

using the Child Behavior Checklist CBCL (school-age version)

(Rescorla & Achenbach, 2001), a validated inventory widely used for

parent reports of children's emotional and behavioral problems. The

CBCL attention problems syndrome scale, an empirical scale consist-

ing of 19 items scored on a three-point Likert scale (0 = absent,

1 = occurs sometimes, 2 = occurs often), measures inattention,

hyperactivity, and impulsivity and has previously been shown to have

good discriminant validity and clinical utility in discriminating between

children with and without ADHD diagnoses (Eiraldi et al., 2000).

2.2.2 | Image acquisition and processing

T1-weighted MRI images were collected using a single, study-

dedicated MRI scanner (GE MR750W) with an eight-channel

receive-only head coil. To acquire T1-weighted structural images, a

coronal inversion recovery fast spoiled gradient recalled (IR-FSPGR)

sequence was used (GE option BRAVO, TR = 8.77 ms, TE = 3.4 ms,

TI = 600 ms, flip angle = 10�, matrix size = 220 � 220, field of

view = 220 mm � 220 mm, slice thickness = 1 mm, number

of slices = 230, ARC acceleration factor = 2). More details can be

found elsewhere (White et al., 2018). Image processing was done

using Freesurfer (version 6.0.0). Processing involved (i) removal of

non-brain tissue, (ii) correction of voxel intensities for B1 field inho-

mogeneities, (iii) tissue segmentation, and (iv) cortical surface-based

reconstruction. All images were visually inspected for inaccuracies in

the surface-based reconstruction by trained raters, as previously

described in the literature (Muetzel et al., 2019). Poor quality recon-

structions were excluded.

2.2.3 | Covariates

Variables included as predictors for inverse probability weighting were

selected based on previous literature. Sex, age, gestational age, and

birth weight were obtained through medical records at birth. Parental

national origin (Dutch, European descent, Turkish/Moroccan,

Surinames/Antillian, Other) was assessed based on the parents' birth

country, in line with the Netherlands Central Office for Statistics

F IGURE 1 Flowchart of study participants in the Generation R
cohort.
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(CBS). The following variables were collected by questionnaires during

pregnancy: maternal age at enrolment (in years), maternal education

level (primary education or lower, secondary education, university

degree, or higher), maternal parity (nulliparous, one child, two, or more

children), maternal smoking during pregnancy (never, smoking use

until pregnancy known, continued smoking use during pregnancy),

maternal alcohol consumption during pregnancy one or more glass/

week for at least two trimesters (yes or no), marital status (married,

living together, no partner), household net monthly income (low:

<2000 euros, middle: 2000–3200 euros, high: >3200 euros). Maternal

psychological distress was assessed using the Brief Symptom Inven-

tory questionnaire global severity index (de Beurs, 2004). Whether

the mother had ever experience depression anxiety or psychosis (yes

or no) was assessed through questionnaires at pregnancy.

The exact variables used to create the different sets of weights can

be found in Table S1. To investigate the contribution of different cov-

ariates to the IPW model, we fitted several models with each leaving a

different group of covariates out. To minimize the number of models to

be fitted we grouped similar covariates together. The first group of vari-

ables consisted of demographic variables relating to the child (sex and

ethnicity). In the second group socioeconomic variables were included

(maternal age at intake, maternal education, and household income).

Maternal age at intake was included in this group because it can give

additional information on socioeconomic status, as both education level

and household income are related to this factor (e.g., women with

higher education tend to have children at a later age). Remaining vari-

ables were grouped as family characteristics, substance use, child birth,

psychopathology mother to allow us to explore the separate effect of

these different types of (early) life exposure on selection bias. To see

an overview of how variables were grouped see Table S2.

Variables included as confounders for the association analysis

were the same as in the study by Hoogman et al. (2019), in order to

reproduce this previous population-based analysis. We included sex,

age, and ethnic background as confounders. Intracranial volume was

additionally included in the surface area analyses.

2.3 | Statistical analyses

The R statistical software (version 4.1.2) was used for all

analyses (R Core Team, 2022).

2.3.1 | Creating weights

Inverse probability of censoring weighting (IPCW) was used to adjust

for potential selection bias due to loss to follow-up, see Box 1. The

weights were created by estimating the probability of not being lost

to follow-up using the covariate balancing propensity score R package

(Imai & Ratkovic, 2014) and subsequently taking the inverse of those

probabilities. Three types of weights were estimated, one set to

weight the sample to the distribution of individuals participating in

the follow-up at 9–11 years old with CBCL data available. These

weights were estimated by modeling the probability of being in the

final analysis sample compared to being in the follow-up sample con-

ditional on the variables listed in the first column of Table S1.

The second set of weights was created to weight the analysis

sample back to the cohort at birth, for example, baseline. These

weights were estimated by modeling the probability of being in the

final analysis sample compared to being in the cohort at birth condi-

tional on the variables listed in the second column of Table S1. By tak-

ing the inverse of those probabilities we derived the respective

weights. The covariates were balanced, based on the standardized

mean differences.

The third and final set of weights was created to weight the sam-

ple to the distribution of the population of Rotterdam using publicly

available data (CBS) on the distribution of characteristics in the Rot-

terdam population in 2002 till 2006, for example, the years in which

the recruitment for Generation R took place. We used the distribu-

tions of sex, ethnicity, maternal age at child birth, marital status, and

parity. Since individual level data was not available but only the popu-

lation distributions were known, the weights had to be created

through a raking procedure, using the anesrake R package

(Pasek, 2018). Raking is a weighting method that generates weights

for each individual participant based on the known population distri-

butions. It is an iterative post-stratification procedure to match the

distributions of the analysis sample to the known population distribu-

tions. The procedures first multiply each individual by the inverse

probability of having a certain characteristic based on the population

distribution of that characteristic. Then the same is done for a second

characteristic. This changes the matched distribution of the first char-

acteristic, so then the first step is repeated. This process is repeated

until there is convergence by which all of the weighted estimates

match the population distributions. The raking procedure is particu-

larly useful when only the marginal proportions for each variable sepa-

rately are known and not the combination of variables (Kalton &

Flores-Cervantes, 2003).

2.3.2 | Multiple imputation

Because some individuals at baseline had partial non-response we used mul-

tiple imputation to impute those missing values (Seaman & White, 2014).

Missing data on baseline covariates were imputed with chained equations

(25 imputed sets, 10 iterations) using the mice R package (van Buuren &

Groothuis-Oudshoorn, 2011). The weights were estimated in each imputed

data set. The percentage of missing values was below 19% for all variables

except for measures relating to psychopathology of the mother (psychologi-

cal distress during pregnancy= 31.35%, depressed ever = 31.24%, anxious

ever = 30.76%, psychoses ever = 30.8%).

2.3.3 | Outcome models

Multiple linear regressions were fitted to model the associations

between attention problems and surface area and thickness in cortical

4 of 13 DIJKZEUL ET AL.
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regions. Analyses were adjusted for age at MRI scan, sex, ICV, and

ethnicity, in order to replicate previous analysis by Hoogman et al.

(2019). For the weighted regression robust standard errors using the

surveydesign R package (Lumley, 2004) were calculated.

3 | RESULTS

3.1 | Sample characteristics

Characteristics of the Generation R cohort at different stages of

follow-up are displayed in Table 1, starting with the cohort at birth

and ending with the study sample for which both MRI and CBCL data

are available. Sample characteristics change when comparing the

cohort at birth to the cohort at age 9–11 years old. Children for whom

CBCL data is available at age 9–11 had a higher birth weight and

higher gestational age. In addition, the members of the cohort at age

9–11 were more likely be of Dutch ethnicity, have higher maternal

age at enrolment, higher maternal education, higher family income,

lower in parity, less psychopathology, and more often without a part-

ner. Although the change in sample characteristics is smaller when

comparing the cohort at 9–11 with CBCL data to the final study sam-

ple, these trends track similarly. Differences between the final

included and excluded samples are shown in Table S1.

3.2 | Inverse probability weighting

We analyzed surface area and thickness for all regions, but focused

specifically on regions identified as being ADHD-associated cortical

features in a previous mega-analysis from the ENIGMA-ADHD Work-

ing group (Hoogman et al., 2019). Adjustment using IPCW to weight

back to the follow-up cohort (age 9–11 years old) with data on the

CBCL assessment did not lead to substantial change in the beta coeffi-

cients. However, weighting to baseline (cohort at birth) resulted in both

increases and decreases in beta coefficients (Figure 2). Subsequently

weighting to the eligible population (Rotterdam) resulted in more or less

similar changes in beta coefficients as weighting to the cohort at birth

for most surface area and thickness measures (Table 2).

Two of the previously established associations with attention

problems became stronger after weighting. We observed that the

unweighted beta coefficient for the middle temporal gyrus surface

area (�13.86, 95% CI [�25.37, �2.35]) increased in magnitude by

6.6% when weighting to the follow-up cohort (�14.81, 95% CI

[�26.59, �3.03]) and increased in magnitude by 37.5% when weight-

ing to baseline (�19.05, 95% CI [�33.56, �4.54]). The coefficients

weighted to the population of Rotterdam at time of recruitment

remained similar to the coefficient weighted to baseline. A similar

effect was observed for the fusiform gyrus thickness. The unweighted

beta coefficient (0.004, 95% CI [0.000, 0.008]) did not change when

weighting to follow-up, though we observe an increase of 45.28%

when weighting to baseline (0.006, 95% CI [0.001, 0.011]), and an

additional increase of 5% when weighed to the Rotterdam population.

For the rostral anterior cingulate surface area we observed a

decrease in the association with attention problems after weighting.

The beta coefficient did not change when weighting to follow-up.

However, compared to the unweighted coefficients (�3.58, 95% CI

[�7.38, 0.22]), weighting to baseline decreased beta coefficients with

15.64% (�3.02, 95% CI [�7.49, 1.46]) and weighting to eligible

resulted in a decrease of 22.91% (�2.67, 95% CI [�7.49, 1.98]).

3.3 | Role of different predictor variables in
estimating weights

For two of the cortical measures (middle temporal gyrus surface area

and temporal pole thickness) most affected by the weighting we

tested different models to disentangle to which extent different vari-

ables contribute to the changes in the weighted regression coeffi-

cients. For both measures, we observed that removing one group of

variables resulted in the weighted regression coefficient moving closer

to the unweighted regression coefficient. Removing variables relating

to socio-economic factors and demographics seems to have the great-

est apparent impact on changes in coefficients for both the middle

temporal gyrus surface area as well as the temporal pole thickness

(Table 3).

3.4 | Effect of using multiple imputation for
missing predictor variables

Because of missingness in the predictors of inclusion (i.e., the vari-

ables used to create the weights), we used multiple imputation to

impute these missing values (see Section 2). To investigate the effect

of imputing missing values in the predictor variables, we reran analysis

for weighting back to the cohort at birth without imputing these pre-

dictors, resulting in an analysis among participants with complete cov-

ariates. As a consequence, less observations were available for

analysis; n = 1773 instead of n = 2701. This is because only the

observations for which we were able to create weights, for example,

those who had no missingness in the predictors of inclusion, could be

used in the weighted analysis. Those analyses showed considerably

different beta coefficients for most surface area regions and all thick-

ness measures (Table 4). Some beta coefficients were more similar to

the unweighted analyses while others changed in the opposite

direction.

4 | DISCUSSION

In this study, we applied inverse probability weighting to address

potential selection bias in the association between ADHD symptoms

and brain morphology. We showed that associations between brain

structure and ADHD symptoms changed, in some cases substantially,

when weighting our sample to baseline or the population of

Rotterdam.
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TABLE 1 Population characteristics for different samples of Generation R cohort.

Baseline (n = 9749) Follow-up (n = 4921) Final sample (n = 2706)

Child characteristics

Sex (girl) 4808 (49.3) 2484 (50.5) 1371 (50.7)

Gestational age at birth (months) 39.70 (2.01) 39.77 (1.89) 39.83 (1.82)

Birth weight (g) 3386.72 (582.83) 3417.84 (576.54) 3433.90 (564.18)

Ethnicity

Dutch 4895 (53.8) 3188 (65.5) 1761 (65.7)

European descent 796 (8.8) 417 (8.6) 228 (8.5)

Turkish/Moroccan 1348 (14.8) 417 (8.6) 217 (8.1)

Surinames/Antillian 1064 (11.7) 420 (8.6) 226 (8.4)

Other 988 (10.9) 422 (8.7) 248 (9.3)

Maternal characteristics

Age at enrolment (years) 29.94 (5.37) 31.38 (4.72) 31.44 (4.67)

Ethnicity

Dutch 4575 (50.5) 3090 (63.6) 1681 (62.7)

European descent 764 (8.4) 410 (8.4) 226 (8.4)

Turkish/Moroccan 1399 (15.4) 412 (8.5) 221 (8.2)

Surinames/Antillian 1097 (12.1) 395 (8.1) 219 (8.2)

Other 1233 (13.6) 555 (11.4) 333 (12.4)

Education during pregnancy

Primary 950 (11.1) 238 (5.1) 114 (4.5)

Secondary 3920 (45.9) 1850 (40.0) 978 (38.5)

Higher 3666 (42.9) 2540 (54.9) 1447 (57.0)

Parity

0 5168 (55.1) 2797 (58.7) 1570 (60.1)

1 2837 (30.2) 1418 (29.8) 766 (29.3)

≥2 1381 (14.7) 550 (11.5) 278 (10.6)

Continued smoking during pregnancy 1483 (18.0) 580 (13.3) 293 (12.2)

Alcohol (1 or more glass/week for at least 2

trimesters) during pregnancy (yes vs. no)

576 (7.3) 412 (9.9) 228 (10.1)

Addiction (yes vs. no) 204 (3.0) 102 (2.7) 52 (2.4)

Psychological distress score during pregnancya 0.30 (0.38) 0.25 (0.32) 0.24 (0.31)

Depression ever (yes vs. no) 1825 (27.6) 1064 (28.4) 595 (28.5)

Anxiety ever (yes vs. no) 973 (14.5) 509 (13.4) 270 (12.8)

Psychosis ever (yes vs. no) 113 (1.7) 51 (1.3) 20 (0.9)

Household characteristics

Marital status mother

Married 4256 (49.8) 2326 (50.5) 1264 (50.1)

Living together 3069 (35.9) 1834 (39.8) 1018 (40.4)

No partner 1220 (14.3) 446 (9.7) 239 (9.5)

Monthly income during pregnancy (>2200 euros) 3684 (54.5) 2611 (66.0) 1476 (68.1)

Note: Values are n (percentages) for categorical, mean (standard deviation) for continuous variables. Baseline: cohort at birth. Follow-up: sample at age

9–11 years old with CBCL data available. Final sample: sample of participant with both CBCL and MRI data.
aScore ranging from 0 to 4.
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4.1 | Estimates obtained from weighted analyses
differ from unweighted

We found that most associations changed after weighting our analysis

using inverse probability weights, some of the associations between

ADHD symptoms and cortical regions were stronger while others

were weaker. Specifically, we found that the association between

ADHD symptoms and the surface area of the middle temporal gyrus,

as well as the thickness of the fusiform gyrus, were stronger after

weighting. Previous attempts in population studies did not found sig-

nificant associations of thickness measures with ADHD symptoms

(Dall'Aglio et al., 2022), while other studies do find these associations

with ADHD (Shaw et al., 2007). Selection bias could potentially be a

part of the explanation for this discrepancy. The association of the

rostral anterior cingulate cortex with ADHD symptoms substantially

reduced after weighting. Few studies have implicated structural differ-

ences in the cingulate cortex, the ones that do might have overesti-

mated this association due to selection bias. However, comparisons to

previous findings should be made with caution due to other factors

relating to study design or methods, besides selection bias, that could

explain some of the differences. Finally, the association of ADHD

symptoms with total surface area was much less affected by weight-

ing compared to more focused regions of interest, suggesting this

association is less susceptible to selection bias. Our results do show

that factors predicting participation and attrition, like the ones consid-

ered in this study (i.e., socio-economic status, psychopathology, and

F IGURE 2 Percentage change in estimated regression coefficients for the CBCL attention problems scale per cortical region after adding
weights to the linear models to weight analysis sample back to cohort at birth.
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TABLE 2 Unweighted and weighted estimated association between cortical regions and CBCL syndrome scale attention problems.

Cortical regions B SE Beta CI lower CI upper p % change

Surface areas

Caudal middle frontal gyrus

Participated (unweighted) �13.70 5.50 �0.037 �24.49 �2.91 .01

IPW to follow-up �14.30 5.51 �0.039 �25.10 �3.49 .01 4.38

IPW to baseline �13.93 6.60 �0.037 �26.87 �0.99 .03 1.68

IPW to eligible (Rotterdam) �13.87 6.90 �0.036 �27.41 �0.33 .04 1.24

Lateral orbitofrontal cortex

Participated (unweighted) �8.67 5.02 �0.025 �18.52 1.17 .08

IPW to follow-up �8.82 5.16 �0.025 �18.92 1.29 .09 1.73

IPW to baseline �9.22 5.79 �0.027 �20.58 2.14 .11 6.34

IPW to eligible (Rotterdam) �8.59 6.01 �0.025 �20.37 3.20 .15 �0.92

Middle temporal gyrus

Participated (unweighted) �13.86 5.87 �0.031 �25.37 �2.35 .02

IPW to follow-up �14.81 6.01 �0.033 �26.59 �3.03 .01 6.58

IPW to baseline �19.05 7.40 �0.043 �33.56 �4.54 .01 37.45

IPW to eligible (Rotterdam) �18.74 7.86 �0.042 �34.15 �3.33 .02 35.21

Posterior cingulate cortex

Participated (unweighted) �4.65 2.42 �0.028 �9.40 0.09 .05

IPW to follow-up �4.90 2.44 �0.029 �9.68 �0.12 .04 5.38

IPW to baseline �4.95 2.71 �0.029 �10.27 0.36 .07 6.45

IPW to eligible (Rotterdam) �4.36 2.84 �0.026 �9.92 1.20 .12 �6.24

Rostral anterior cingulate cortex

Participated (unweighted) �3.58 1.94 �0.026 �7.38 0.22 .06

IPW to follow-up �3.52 1.98 �0.025 �7.41 0.36 .08 �1.68

IPW to baseline �3.02 2.28 �0.022 �7.49 1.46 .19 �15.64

IPW to eligible (Rotterdam) �2.76 2.42 �0.020 �7.49 1.98 .25 �22.91

Superior frontal gyrus

Participated (unweighted) �7.10 11.97 �0.007 �30.56 16.37 .55

IPW to follow-up �7.48 11.84 �0.007 �30.69 15.73 .53 5.35

IPW to baseline �3.53 13.57 �0.002 �30.12 23.07 .79 �50.28

IPW to eligible (Rotterdam) �11.89 13.66 �0.012 �38.66 14.88 .38 67.46

Total surface area

Participated (unweighted) �320.46 77.38 �0.036 �472.18 �168.73 <.001

IPW to follow-up �335.89 78.75 �0.037 �490.24 �181.55 <.001 4.81

IPW to baseline �320.30 89.70 �0.036 �496.11 �144.48 <.001 �0.05

IPW to eligible (Rotterdam) �315.02 92.83 �0.035 �496.98 �133.07 <.001 �1.70

Thickness

Fusiform gyrus

Participated (unweighted) 0.004 0.002 0.040 0.000 0.008 .04

IPW to follow-up 0.004 0.002 0.042 0.000 0.008 .03 0.04

IPW to baseline 0.006 0.003 0.059 0.001 0.011 .02 45.28

IPW to eligible (Rotterdam) 0.006 0.003 0.060 0.001 0.011 .02 50.16

Temporal pole

Participated (unweighted) 0.012 0.007 0.034 �0.002 0.025 .08 0.084

IPW to follow-up 0.011 0.007 0.032 �0.002 0.025 .10 �8.33

IPW to baseline 0.006 0.008 0.018 �0.009 0.022 .43 �50.00

IPW to eligible (Rotterdam) 0.007 0.008 0.021 �0.009 0.024 .36 �35.74

Note: Regions are average of left and right hemisphere surface area. Model adjusted for age, sex, and ethnic background. ICV included as covariate in the surface
area analysis.
Abbreviations: B, unstandardized regression coefficient for the square root transformed CBCL syndrome scale attention problem score; beta, standardized
regression coefficient; CI, 95% confidence interval of that regression coefficient; IPW, inverse probability weighted; % change, percentage change in regression
coefficient compared to unweighted regression coefficient.
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health factors), can bias the relation between ADHD symptoms and

specific regions of the brain in both directions.

4.2 | Specification of the response model

Next we explored how different groups of variables contribute to

selection bias. The main model used to correct for selection bias

included variables relating to demographics, socio-economic status,

family characteristics, substance use, child birth, and psychopathology

of the mother. We suspected all of these variables were possibly caus-

ing selection bias after identifying that those could be both related to

participation as well as ADHD and brain morphology. By testing sev-

eral models, each time leaving one group of variables out, we found

that each group of variables were important to include. However,

results changed most when removing variables relating to socio-

economic status (SES), indicating that those variables appeared to

contribute most to the selection bias. Accordingly, we observed that

in our final sample more people with low SES were lost to follow-up,

meanwhile lower SES is associated with both ADHD and variation in

brain structure (Noble et al., 2015; Russell et al., 2016). Thus, the

occurrence of selection bias due to SES factors is very likely in this

case, explaining the stronger shift in effect estimates and correspond-

ing significance when removing these variables from the model. Little

literature exists pertaining to which type of variables should be

included into the response model used for creating the weights. Typi-

cally in studies that apply IPCW, it is common practice to build the

response and outcome model independently. Here the main focus is

more on fitting a model that perfectly predicts response and not to

optimize the response model in relation to the outcome model, thus

leaving variables out if they do not “significantly” improve prediction.

Hernán et al. (2004) suggested it is important to include all predictors

of both response and outcome. In addition, Seaman and White (2013)

recommended excluding variables that are only related to response

and not to the outcome or exposure, but including variables associ-

ated with both exposure and outcome or solely with the outcome. In

this context, variables should not be removed solely based on how

well they contribute to the prediction model. In support of these rec-

ommendations, we found that leaving covariates related to both

response and the exposure/outcome out of the model increases bias.

For this reason, we recommend building the response model based on

DAGs and previous knowledge and to include all variables that are

related to both response and the exposure outcome relation under

study.

4.3 | Combining inverse probability of censoring
weighting with multiple imputation

We also assessed the impact of not imputing missing data in the cov-

ariates used for building the weights. As in many studies, we found

that there was some missing covariate data at baseline due to partial

non-response (e.g., questions not filled in, failed measurements). The

baseline data is the data that was used to create weights. Most data

TABLE 3 Weighted estimated association between cortical regions and CBCL syndrome scale attention problems obtained by different
models.

Cortical region IPW method—response model B SE Beta CI lower CI upper p

Surface area

Middle temporal gyrus Full model �19.05 7.40 �0.043 �33.56 �4.54 .01

Without demographics �17.63 7.50 �0.039 �32.33 �2.92 .02

Without SES �17.47 6.66 �0.040 �30.52 �4.42 .01

Without family characteristics �18.42 7.32 �0.041 �32.77 �4.07 .01

Without substance use �18.11 7.35 �0.040 �32.52 �3.69 .01

Without child birth �18.30 7.39 �0.041 �32.79 �3.82 .01

Without psychopathology �18.47 7.20 �0.041 �32.58 �4.36 .01

Thickness

Temporal pole Full model 0.006 0.008 0.018 �0.009 0.022 .43

Without demographics 0.009 0.008 0.026 �0.007 0.025 .25

Without SES 0.011 0.008 0.031 �0.004 0.026 .16

Without family characteristics 0.008 0.008 0.023 �0.008 0.024 .31

Without substance use 0.008 0.008 0.024 �0.007 0.024 .30

Without child birth 0.008 0.008 0.022 �0.007 0.023 .31

Without psychopathology 0.008 0.008 0.021 �0.008 0.023 .33

Note: Regions are average of left and right hemisphere surface area. Models adjusted for age, sex, and ethnic background. ICV included as covariate in the

surface area analysis.

Abbreviations: B, unstandardized regression coefficient for the square root transformed CBCL syndrome scale attention problem score; beta, standardized

regression coefficient; CI, 95% confidence interval of that regression coefficient; IPW, inverse probability weighted.
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(around 30%) were missing on maternal psychopathology; we defined

this variable as an important one to include in the model. We hypoth-

esized that a mother's mental health can have an effect on the child's

psychopathology and brain morphology while also potentially

influencing participation/continuation in the study. Indeed in later

stages of the study, we observe less participants with mothers with

psychopathology. Disregarding the issue of missing data would mean

that we could either not use maternal psychopathology as a variable

in the model or only create weights for participants with data on

maternal psychopathology, which would again create a selected sam-

ple which was possibly biased. We investigated the impact of the lat-

ter by not imputing data. Our results showed that when weights were

estimated based on non-imputed data this indeed also resulted in

biased estimates, showing that the combination of both methods is

crucial when there is missing data in the variables used to create

weights. These findings further illustrate what has been described

previously in the context of combining multiple imputations with

IPTW (Seaman et al., 2012). Imputation methods are mainly useful in

scenarios of partial non-response as there is enough auxiliary informa-

tion on which the imputation can be based. In the case of loss to

follow-up, for example, complete non response, there is a high risk of

misspecification of the imputation model (Seaman et al., 2012). This is

where inverse probability weighting is most useful. Therefore, we

argue that it is most beneficial to combine both MI and IPW when

there is loss to follow-up and partial missing covariate data at

baseline.

TABLE 4 Estimated association between cortical regions and CBCL syndrome scale attention problems weighted back to cohort at birth
using imputed data (n = 9749) or data with only complete cases (n = 4485).

Cortical region B SE CI lower CI upper p

Surface area

Caudal middle frontal gyrus Unweighted �13.70 5.50 �24.49 �2.91 .01

IPCW + MI �13.93 6.60 �26.87 �0.99 .03

IPCW only �16.87 7.40 �31.39 �2.35 .02

Lateral orbitofrontal cortex Unweighted �8.67 5.02 �18.52 1.17 .08

IPCW + MI �9.22 5.79 �20.58 2.14 .11

IPCW only �1.99 7.03 �15.78 11.80 .78

Middle temporal gyrus Unweighted �13.86 5.87 �25.37 �2.35 .02

IPCW + MI �19.05 7.40 �33.56 �4.54 .01

IPCW only �13.82 8.42 �30.32 2.69 .10

Posterior cingulate cortex Unweighted �4.65 2.42 �9.40 0.09 .05

IPCW + MI �4.95 2.71 �10.27 0.36 .07

IPCW only �4.19 3.22 �10.51 2.12 .19

Rostral anterior cingulate cortex Unweighted �3.58 1.94 �7.38 0.22 .06

IPCW + MI �3.02 2.28 �7.49 1.46 .19

IPCW only �3.57 2.60 �8.68 1.53 .17

Superior frontal gyrus Unweighted �7.10 11.97 �30.56 16.37 .55

IPCW + MI �3.53 13.57 �30.12 23.07 .79

IPCW only �7.32 15.48 �37.68 23.04 .64

Total surface area Unweighted �320.46 77.38 �472.18 �168.73 <.001

IPCW + MI �320.30 89.70 �496.11 �144.48 <.001

IPCW only �299.23 113.27 �521.37 �77.10 .01

Thickness

Fusiform gyrus Unweighted 0.004 0.002 0.000 0.008 .04

IPCW + MI 0.006 0.008 �0.009 0.022 .43

IPCW only 0.005 0.009 �0.014 0.023 .61

Temporal pole Unweighted 0.012 0.007 �0.002 0.025 .08

IPCW + MI 0.006 0.003 0.001 0.011 .02

IPCW only 0.004 0.003 �0.001 0.010 .14

Note: Regions are the average of left and right hemisphere surface area. Model is adjusted for age, sex, and ethnic background. ICV is also included as a

covariate in the surface area analysis.

Abbreviations: B, unstandardized regression coefficient for the square root transformed CBCL syndrome scale attention problem score; CI, 95%

confidence interval of that regression coefficient; IPCW, inverse probability of censoring weighting; MI, multiple imputation.
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4.4 | The advantage of rich baseline data

In general, our results provide more evidence for the presence of bias

due to loss to follow-up in comparison to several previous investiga-

tions of selection bias in large prospective cohort studies (Bliddal

et al., 2018; Greene et al., 2011; Nohr & Liew, 2018; Wolke

et al., 2009). This can be explained in several ways. First, previous

studies did not focus specifically on neuroimaging in the context of

ADHD. This particular association is perhaps more susceptible to

selection bias then others, for instance due to unorganized behavior

in parents and children causing them to be less likely to successfully

continue participation in studies. Second, selection bias and missing

data can be addressed in a number of ways, and as our results demon-

strated this could lead to different results. Less information, either

due to missing data or by leaving out variables, will affect how well

the weights perform. The Generation R cohort offered the advantage

of including many relevant variables to create the response model for

weighting to baseline. However, additionally weighting to the Rotter-

dam population resulted in a much smaller change in estimates, even

though we know our baseline sample differs from the target popula-

tion (Jaddoe et al., 2012). This could be due to the fact that we had

less information to weight our sample to the Rotterdam population

then weighting to baseline (i.e., several factors which related to attri-

tion were not part of the weights); however, it could also mean Gen-

eration R generally has a good baseline response rate. A characteristic

of the Generation R cohort is the relatively high baseline response

(62%) compared to other studies. It may be that, a less motivated or

more disadvantaged population is initially recruited which may lead to

higher subsequent loss to follow-up. As a consequence of these

higher loss to follow-up, weighting can have more of an effect than it

would have in studies with a more selected or motivated baseline

sample. However, in studies with a more selected baseline sample

there could be more bias due to selection mechanisms that are related

to baseline recruitment. Often those selection mechanisms are

unknown and this complicates the generalizability to a target popula-

tion (Jöckel & Stang, 2013; Westreich et al., 2019). Thus, although a

high baseline response may result in higher loss to follow-up and

potentially more selection bias, with sufficient information on non-

participants, it creates the possibility to apply weights that bring esti-

mates closer to the true effect in the target population.

4.5 | Application to other types of psychiatric
neuroimaging studies

The abovementioned considerations do apply to the broader psychiat-

ric neuroimaging field. In clinical studies, often utilizing a case control

design, there should be more consideration for factors inducing selec-

tion bias and threats to generalizability. Although smaller clinically

focused studies might have less loss to follow-up compared to large

cohort studies, there are still several mechanisms through which

selection bias can occur. For instance, excluding scans after quality

control could already induce selection bias, as someone with ADHD

might have more difficulty with laying still in the scanner and thus has

a higher chance of being excluded due to a poor quality scan. In addi-

tion, most studies rely on highly selective study samples that are not

representative of a well-defined target population. Often these stud-

ies are designed without even defining a target population, for exam-

ple, the specific group or population to which the study findings are

intended to be generalized or applied. The study base, the population

from which the study participants are selected, is often far from repre-

sentative of a reference pool due to convenience sampling, the choice

to include only extreme cases or selection of “well” controls

(Schwartz & Susser, 2011). This induces another potential source of

selection bias due to unknown selection mechanisms related to base-

line recruitment as illustrated in the previous paragraph. However,

selection bias is rarely addressed within neuroimaging studies. Our

findings demonstrate that this could lead to a biased interpretation of

results. Thus, in order to address these issues, future psychiatric neu-

roimaging studies should first of all be clear in defining a target popu-

lation to which they want to generalize their results to. Secondly,

future studies should try to obtain sufficient information on eligible

people from the target population that do not end up in the final anal-

ysis sample. This allows researchers to at least be aware of the extent

of too which selection bias might be present. Third, we encourage

researchers to address selection bias using inverse probability weight-

ing in order to get more robust results.

4.6 | Limitations

A few limitations must be kept in mind when interpreting our results.

While inverse probability weighting addresses selection bias due to

variables included in the response model, there might be unmeasured

factors related to participation and outcome not included in our

model. However, the aim of our study was to illustrate the use of

inverse probability weighting not to explore the full magnitude

of potential bias. Additionally, our results are restricted to neuroimag-

ing in the context of ADHD. However, it is likely that these results

also generalize to other types of psychiatric neuroimaging studies,

since many of the factors that we included to address selection bias

not only relate to ADHD but also to other types of psychiatric disor-

ders. Third, this study relied solely on symptom-level data for ADHD

within the general population. Nevertheless, the brain alteration

explored in this study has also been linked to individuals with an

ADHD diagnoses in a large consortium of 36 centers (ENIGMA-

ADHD Working group). The brain differences that were found

between individuals with and without ADHD diagnoses also became

apparent when performing a continuous analysis to find brain features

associated with ADHD symptoms within the general population

(Hoogman et al., 2019). These findings suggest that not only ADHD

symptoms but also brain phenotypes lie on a continuum. Therefore

we suspect our results could also have implications for studies with

clinical samples. However, whether the impact of selection bias would

be more or less profound in clinical samples is still unclear. To improve

the generalizability of our findings beyond the population-based
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study, we suggest future research to investigate the impact of selec-

tion bias on associations between brain structure and ADHD in clini-

cal samples.

5 | CONCLUSION

To conclude, in this study, IPCW was used to address selection bias

in a cohort study with a high baseline response. We found that asso-

ciations between ADHD symptoms and brain structure were altered,

both stronger and weaker, when using inverse probability weighting.

In addition, we showed that leaving out variables identified as pre-

dictors of participation that are related to exposure-outcome

resulted in more bias. Finally, we demonstrated the importance of

combining IPCW with MI when there is missing data in variables

identified as predictors of participation. Taken together, the findings

from this study suggest that non-random selection mechanisms

within neuroimaging studies can lead to biased results. To prevent

systematic biased interpretation of results we encourage future psy-

chiatric neuroimaging studies to (i) clearly define a target population,

(ii) try to obtain and use information on eligible participants that are

not included in the final analysis sample, and (iii) use inverse proba-

bility of censoring weighting. Our results demonstrate how inverse

probability weighting can be used and highlight the importance of

doing so in the neuroimaging field, especially in the context of men-

tal health related topics.
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