5 research outputs found

    New and improved infrared absorption cross sections for trichlorofluoromethane (CFC-11)

    No full text
    Trichlorofluoromethane (CFC-11), a widely used refrigerant throughout much of the twentieth century and a very potent (stratospheric) ozone-depleting substance (ODS), is now banned under the Montreal Protocol. With a long atmospheric lifetime, it will only slowly degrade in the atmosphere, so monitoring its vertical concentration profile using infrared-sounding instruments, and thereby validating stratospheric loss rates in atmospheric models, is of great importance; this in turn requires high-quality laboratory spectroscopic data. This work describes new high-resolution infrared absorption cross sections of trichlorofluoromethane/dry synthetic air over the spectral range 710-1290 cm-1, determined from spectra recorded using a high-resolution Fourier transform spectrometer (Bruker IFS 125HR) and a 26 cm pathlength cell. Spectra were recorded at resolutions between 0.01 and 0.03 cm-1 (calculated as 0.9/MOPD; MOPD: maximum optical path difference) over a range of temperatures and pressures (7.5-760 Torr and 192-293 K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN (HIghresolution TRANsmission) and GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques) databases through an extension to the range of pressures and temperatures, improved signal-to-noise and wavenumber calibrations, the lack of channel fringing, the better consistency in integrated band intensities, and additionally the coverage of the weak combination band v2+v5

    New infrared absorption cross sections for the infrared limb sounding of carbon tetrafluoride (CF4)

    No full text
    Carbon tetrafluoride (CF4), also known as tetrafluoromethane and sometimes CFC-14, has a natural lithospheric source, however the enhanced modern-day concentrations relative to this natural source have arisen from leaks into the atmosphere by industry, most significantly related to the production of aluminium and semiconductors. A potent greenhouse gas, with one of the longest atmospheric lifetimes of 50,000 years, the abundance of carbon tetrafluoride is steadily increasing in the atmosphere. In order to monitor its concentration profiles using infrared sounders, accurate laboratory spectroscopic data are required. This work describes new high-resolution infrared absorption cross sections of pure and air-broadened carbon tetrafluoride over the spectral range 1190–1336 cm , derived from spectra recorded using a high-resolution Fourier transform spectrometer (Bruker IFS 125HR) and a 26-cm-pathlength cell. Spectra were recorded at resolutions between 0.0018 and 0.03 cm (calculated as 0.9/MOPD; MOPD = maximum optical path difference) over a range of atmospherically relevant temperatures (190 – 296 K) and pressures (up to 760 Torr). These new absorption cross sections improve upon those previously used for remote sensing, and will provide a more accurate basis for retrievals in the future

    New and improved infrared absorption cross sections for chlorodifluoromethane (HCFC-22)

    Full text link
    The most widely used hydrochlorofluorocarbon (HCFC) commercially since the 1930s has been chlorodifluoromethane, or HCFC-22, which has the undesirable effect of depleting stratospheric ozone. As this molecule is currently being phased out under the Montreal Protocol, monitoring its concentration profiles using infrared sounders crucially requires accurate laboratory spectroscopic data. This work describes new high-resolution infrared absorption cross sections of chlorodifluoromethane over the spectral range 730-1380 cm-1, determined from spectra recorded using a high-resolution Fourier transform spectrometer (Bruker IFS 125HR) and a 26 cm pathlength cell. Spectra of chlorodifluoromethane/dry synthetic air mixtures were recorded at resolutions between 0.01 and 0.03 cm-1 (calculated as 0.9/MOPD; MOPD denotes the maximum optical path difference) over a range of temperatures and pressures (7.5-762 Torr and 191-295 K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN (HIgh-resolution TRANsmission) and GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques) databases; in particular it provides coverage over a wider range of pressures and temperatures, has more accurate wavenumber scales, more consistent integrated band intensities, improved signal to-noise, is free of channel fringing, and additionally covers the v2 and v7 bands

    New and improved infra-red absorption cross sections and ACE-FTS retrievals of carbon tetrachloride (CCl4)

    Get PDF
    Carbon tetrachloride (CCl4) is one of the species regulated by the Montreal Protocol on account of its ability to deplete stratospheric ozone. As such, the inconsistency between observations of its abundance and estimated sources and sinks is an important problem requiring urgent attention (Carpenter et al., 2014) [5]. Satellite remote-sensing has a role to play, particularly limb sounders which can provide vertical profiles into the stratosphere and therefore validate stratospheric loss rates in atmospheric models.This work is in two parts. The first describes new and improved high-resolution infra-red absorption cross sections of carbon tetrachloride/dry synthetic air over the spectral range 700-860cm-1 for a range of temperatures and pressures (7.5-760Torr and 208-296K) appropriate for atmospheric conditions. This new cross-section dataset improves upon the one currently available in the HITRAN and GEISA databases. The second describes a new, preliminary ACE-FTS carbon tetrachloride retrieval that improves upon the v3.0/v3.5 data products, which are biased high by up to ~20-30% relative to ground measurements. Making use of the new spectroscopic data, this retrieval also improves the microwindow selection, contains additional interfering species, and utilises a new instrumental lineshape; it will form the basis for the upcoming v4.0 CCl4 data product

    Satellite observations of stratospheric hydrogen fluoride and comparisons with SLIMCAT calculations

    Full text link
    The vast majority of emissions of fluorine-containing molecules are anthropogenic in nature, e.g. chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). Many of these fluorine-containing species deplete stratospheric ozone and are regulated by the Montreal Protocol. Once in the atmosphere they slowly degrade, ultimately leading to the formation of hydrogen fluoride (HF), the dominant reservoir of stratospheric fluorine due to its extreme stability. Monitoring the growth of stratospheric HF is therefore an important marker for the success of the Montreal Protocol. We report the comparison of global distributions and trends of HF measured in the Earth's atmosphere by the satellite remote-sensing instruments ACE-FTS (Atmospheric Chemistry Experiment Fourier transform spectrometer), which has been recording atmospheric spectra since 2004, and HALOE (HALogen Occultation Experiment), which recorded atmospheric spectra between 1991 and 2005, with the output of SLIMCAT, a state-of-the-art three-dimensional chemical transport model. In general the agreement between observation and model is good, although the ACE-FTS measurements are biased high by ~10% relative to HALOE. The observed global HF trends reveal a substantial slowing down in the rate of increase of HF since the 1990s: 4.97±0.12%year-1 (1991-1997; HALOE), 1.12±0.08%year-1 (1998-2005; HALOE), and 0.52±0.03%year-1 (2004-2012; ACE-FTS). In comparison, SLIMCAT calculates trends of 4.01, 1.10, and 0.48%year-1, respectively, for the same periods; the agreement is very good for all but the earlier of the two HALOE periods. Furthermore, the observations reveal variations in the HF trends with latitude and altitude; for example, between 2004 and 2012 HF actually decreased in the Southern Hemisphere below 35km. An additional SLIMCAT simulation with repeating meteorology for the year 2000 produces much cleaner trends in HF with minimal variations with latitude and altitude. Therefore, the variations with latitude and altitude in the observed HF trends are due to variability in stratospheric dynamics on the timescale of a few years. Overall, the agreement between observation and model points towards the ongoing success of the Montreal Protocol and the usefulness of HF as a metric for stratospheric fluorine
    corecore