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Carbon tetrachloride (CCl4) is one of the species regulated by the Montreal Protocol on
account of its ability to deplete stratospheric ozone. As such, the inconsistency between
observations of its abundance and estimated sources and sinks is an important problem
requiring urgent attention (Carpenter et al., 2014) [5]. Satellite remote-sensing has a role
to play, particularly limb sounders which can provide vertical profiles into the strato-
sphere and therefore validate stratospheric loss rates in atmospheric models.

This work is in two parts. The first describes new and improved high-resolution infra-
red absorption cross sections of carbon tetrachloride/dry synthetic air over the spectral
range 700–860 cm�1 for a range of temperatures and pressures (7.5–760 Torr and 208–
296 K) appropriate for atmospheric conditions. This new cross-section dataset improves
upon the one currently available in the HITRAN and GEISA databases. The second
describes a new, preliminary ACE-FTS carbon tetrachloride retrieval that improves upon
the v3.0/v3.5 data products, which are biased high by up to �20–30% relative to ground
measurements. Making use of the new spectroscopic data, this retrieval also improves the
microwindow selection, contains additional interfering species, and utilises a new
instrumental lineshape; it will form the basis for the upcoming v4.0 CCl4 data product.
& 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A clear, colourless, sweet-smelling liquid at room
temperature, carbon tetrachloride (CCl4; also known as
tetrachloromethane or CFC-10) was first synthesised in
1839 from chloroform and chlorine gas by Henry Victor
Regnault [1]. As carbon tetrachloride does not occur
naturally in the Earth system, its presence in the atmo-
sphere, soil and ocean arises through its
anthropogenic uses.
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In the early twentieth century, carbon tetrachloride
found many uses, for example in dry cleaning (excellent
solvent properties), fire extinguishers, postage stamp col-
lecting (to reveal watermarks without damaging the
paper), lava lamps, and even as a refrigerant in early
refrigerators. The discovery that carbon tetrachloride is
harmful to human health – a potential human carcinogen,
it has been shown to depress the central nervous system,
inhibit liver and kidney function, and even kill – led to a
decline in these uses. However, this had no effect on the
largest industrial application of carbon tetrachloride in the
twentieth century, its use as a feedstock in the production
of trichlorofluoromethane (CFC-11) and dichlorodi-
fluoromethane (CFC-12), which were commercialised in
the 1930s as nonflammable and non-toxic refrigerants [2].
ss article under the CC BY license
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It was not until the realisation that long-lived chlorine-
containing species such as CCl4 and the CFCs (chloro-
fluorocarbons) could destroy stratospheric ozone that the
use of CCl4 in industry began to decline, as regulated by
the 1987 Montreal Protocol (and its later amendments).
Under the terms of the Protocol production and con-
sumption of CCl4 were eliminated for developed countries
in 1996 and for developing countries in 2010 [3]. There are
no limits on the use of CCl4 as a feedstock, however, so it is
still used, for example, in the production of hydro-
fluorocarbons. Although an ozone-depleting substance,
with an ozone depletion potential of 0.72 [4], CCl4 is also a
very strong greenhouse gas with a 100-year global
warming potential of 1730 [4].

As one of the species controlled by the Montreal Pro-
tocol, there is much work carried out in monitoring CCl4
atmospheric concentrations by global networks such as
AGAGE (Advanced Global Atmospheric Gases Experiment),
NOAA (National Oceanic and Atmospheric Administration),
and UCI (University of California, Irvine). The latest ozone
assessment report from 2014 [5] indicates that the global
surface mean mole fraction of CCl4 has continued to
decline between 2008 and 2012, with the AGAGE and UCI
networks reporting a rate of decline of 1.2–1.3% from 2011
to 2012, and 1.6% reported by the NOAA network. These
rates of decline are comparable with those determined by
remote sensing instruments of 1.1–1.2% yr�1, from the
Atmospheric Chemistry Experiment-Fourier transform
spectrometer (ACE-FTS) on SCISAT and the ground-based
FTS at Jungfraujoch [6].

Recently there has been particular interest in carbon
tetrachloride, on account of the inconsistency between
observations of its abundance and estimated sources and
sinks [3]. A recent study [3] has suggested that the
observed inter-hemispheric gradient for CCl4 (1.570.2 ppt
for 2000–2012) is primarily caused by ongoing emissions,
however the 2007–2012 emissions estimate based on the
UNEP reported production and feedstock usage is near-
zero. Additionally, the decline of atmospheric concentra-
tions is slower than can be accounted for by our current
best estimates of the total CCl4 lifetime and its
uncertainties.

In addition to the ground-based networks of CCl4
measurements, remote-sensing measurements which
provide vertical profiles into the stratosphere are particu-
larly useful in validating stratospheric loss rates in atmo-
spheric models (the atmospheric loss of CCl4 is essentially
all due to photolysis in the stratosphere). The literature
reports a number of remote-sensing instruments capable
of measuring CCl4 in the Earth's atmosphere: ATMOS
(Atmospheric Trace MOlecule Spectroscopy) [7] and CIRRIS
1A (Cryogenic Infra-Red Radiance Instrumentation for
Shuttle) [8], both deployed on the space shuttle, the JPL
balloon-borne MkIV interferometer [1], MIPAS (Michelson
Interferometer for Passive Atmospheric Sounding) on
ENVISAT (ENVIronmental SATellite) (e.g. [9]), and the ACE-
FTS [1,10].

In the literature, the only global distribution of CCl4
extending up to the mid-stratosphere is derived from ACE-
FTS measurements. Covering the spectral region 750–
4400 cm�1 with a resolution of 0.02 cm�1, the ACE-FTS
instrument uses the sun as a light source to record limb
transmission through the Earth's atmosphere (�300 km
effective length) during sunrise and sunset (‘solar occul-
tation’). The measured spectra, with high signal-to-noise
ratios and through long atmospheric path lengths, provide
a low detection threshold for retrieving the profiles of
trace species. In fact, the ACE-FTS can detect more of these
species than any other satellite instrument, although it
only records spectra for at most 30 occultation events per
day [11,12 (this issue)]. Unfortunately, the ACE-FTS v3.0/
v3.5 CCl4 retrieval is biased high by up to �20–30% rela-
tive to ground measurements; the reasons for this have
been attributed to errors in the CCl4 spectroscopy, bad line
parameters from other absorbing species in the micro-
window, and several absorbing species missing from the
forward model. The aim of the present work was to
improve the ACE-FTS CCl4 retrieval and minimise this high
bias. This problem has been attacked on two fronts:
(1) through the utilisation of new laboratory spectroscopic
measurements of air-broadened CCl4 samples over a range
of atmospheric pressure-temperature (PT) combinations
and; (2) through improvements in the retrieval itself, in
particular improved microwindow selection (the avoid-
ance of spectral regions associated with poor or inade-
quate line parameters of interfering species), the inclusion
of new interfering species, and a new instrumental line-
shape (ILS). This new scheme will form the basis for the
upcoming processing version 4.0 of ACE-FTS data. Section
2 of this manuscript presents some spectroscopic back-
ground to CCl4, and a discussion of previous infra-red (IR)
absorption cross section datasets. Section 3 provides
details on the new measurements, the derivation of cross
sections, and a discussion of the results and comparison
with previous measurements. Section 4 provides details of
the new ACE-FTS CCl4 retrieval scheme.
2. Infra-red spectroscopy of carbon tetrachloride

2.1. Spectroscopic background

Since carbon and chlorine each have two stable iso-
topes, there are ten stable isotopologues of carbon tetra-
chloride, namely 12/13C35Cl4, 12/13C35Cl3

37
Cl, 12/13C35Cl2

37
Cl2,

12/13C35Cl37Cl3, and 12/13C37Cl4; these belong to the point
groups Td, C3v, C2v, C3v and Td, respectively. With natural
abundances of �99% and �1% for 12C and 13C, and �76%
and �24% for 35Cl and 37Cl, it turns out that the four
isotopologues 12C35Cl4, 12C35Cl3

37
Cl, 12C35Cl2

37
Cl2, and 12/

13C35Cl37Cl3 account for �99% of the isotopologues found,
that is 33%, 42%, 20% and 4%, respectively [13].

CCl4 has nine normal vibrational modes; in the Td point
group these are labelled ν1 (non-degenerate, A1), ν2 (dou-
bly-degenerate, E), ν3 (triply degenerate, T2), and ν4 (triply
degenerate, T2). For the lower-symmetry isotopologues,
the degeneracy can be lifted; ν2 splits into A1 and A2 for
C2v, and ν3 and ν4 split into A1 and E under C3v, and A1, B1

and B2 under C2v. In the literature, however, it is more
common to label bands under the assumption of Td sym-
metry, as the splittings are likely small to a first
approximation.



Fig. 1. The IR absorption cross section of carbon tetrachloride/dry synthetic air at 208.0 K and 7.501 Torr, with vibrational band assignments for the two
main band systems in the 700–860 cm�1 spectral region.
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The strong ν3 fundamental and ν1þν4 combination
bands of CCl4 are situated in the 700–860 cm�1 spectral
region, with Fermi resonance between these levels
resulting in both bands having mixed character and the
latter having enhanced intensity [13]. The extremely dense
rotation–vibration spectrum is complicated by the pre-
sence of isotopologues, which contribute to the spectrum
in proportion with their natural abundances. As such, it is
a difficult task to derive spectroscopic line parameters for
CCl4. For this reason, remote-sensing of the Earth's atmo-
sphere requires the use of absorption cross sections
derived from air-broadened spectra recorded in the
laboratory. Fig. 1 provides a plot of the new absorption
cross section at 208.0 K and 7.501 Torr with these main
band systems labelled. Full details on the measurement
conditions and derivation of this cross section are given in
Section 3.

2.2. A brief history of carbon tetrachloride absorption
crosssections

The HITRAN 1986 compilation [14] included for the first
time high resolution (0.03 cm�1) cross sections for the
simulation of the spectra of a number of important
atmospheric molecules, including CCl4, for which no line
parameters were available. These cross sections, with a
quoted accuracy of 10–25%, were derived from laboratory
absorption spectra of pure samples recorded at 296 K at
the University of Denver [15].

The first published temperature-dependent CCl4 cross
sections appeared in 1992 [16]. Derived from measure-
ments of pure CCl4 at 0.05 cm�1 resolution and 223, 248,
273 and 298 K, these data were later included in the
HITRAN 1996 compilation [17].

N2-broadened CCl4 absorption cross sections between
750 and 812 cm�1, derived from measurements over a
range of temperatures down to 208 K at a spectral reso-
lution of 0.03 cm�1 [18], henceforth referred to as the
Nemtchinov dataset, were subsequently included in
HITRAN 2000 [19]. This dataset has been used extensively
for remote-sensing applications over the last decade and a
half. This dataset has remained unchanged for subsequent
HITRAN compilations, including the most recent HITRAN
2012 [20], and has additionally been included in the most
recent GEISA 2003 [21] and 2009 [22] compilations.
Despite its widespread use, the Nemtchinov dataset has a
number of deficiencies which will be fully discussed in
Section 3. Such deficiencies in the underlying laboratory
spectroscopy compromise the accuracy of retrieved
quantities, such as volume mixing ratios (VMRs), in
remote-sensing applications. The new spectroscopic
dataset described in the present work provides an
improvement over previous available datasets.
3. New absorption cross sections of air-broadened
carbon tetrachloride

3.1. Experimental

The experimental setup and procedures have been used
previously for related measurements (e.g. [23,24]), so only
brief details are provided here. All measurements were
performed at the Molecular Spectroscopy Facility (MSF),
Rutherford Appleton Laboratory (RAL), using a Bruker
Optics IFS 125 HR FTS, and an internally mounted 26-cm-
pathlength sample cell connected to a Julabo F95-SL Ultra-
Low Refrigerated Circulator filled with ethanol. The cell
temperature was monitored by four platinum resistance
thermometers (PRTs) in thermal contact at different points
on the exterior surface of the cell. Mixture pressures were
measured using Baratron capacitance manometers (MKS).
Samples were provided by Fluka (CCl4; analytical standard,
Z99.95% purity, natural-abundance isotopic mixture) and
BOC Gases (dry synthetic air or ‘Air Zero’, total
hydrocarbons o 3 ppm, H2Oo2 ppm, CO2o1 ppm,
COo1 ppm). The carbon tetrachloride sample (liquid at
room temperature) was freeze-pump-thaw purified mul-
tiple times prior to use, whereas the synthetic air was used
‘as is’. Air-broadened CCl4 IR spectra were recorded over a
range of pressures and temperatures, and at resolutions
between 0.01 and 0.03 cm�1 (defined as the Bruker
instrument resolution of 0.9/MOPD; MOPD¼maximum
optical path difference), 0.01 cm�1 for the lowest
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pressures (in the Doppler-limited regime), and 0.03 cm�1

for the highest pressures. Pure nitrous oxide (N2O) spectra
were additionally recorded at each temperature to cali-
brate the wavenumber scale of the air-broadened CCl4
spectra. The FTS instrumental parameters and settings are
summarised in Table 1, with sample pressures, tempera-
tures, and their experimental uncertainties and associated
spectral resolutions listed in Table 2.

3.2. Generation of absorption cross sections

The procedure for generating absorption cross sections
from experimental data has been reported previously (e.g.
Table 1
FTS parameters and cell configuration for all measurements.

Mid-IR source Globar
Detector Mercury cadmium telluride (MCT) D313 a

Beam splitter Potassium bromide (KBr)
Optical filter �700–1700 cm�1 bandpass
Spectral resolution 0.01 to 0.03 cm-1

Aperture size 3.15 mm
Apodisation function Boxcar
Phase correction Mertz
Cell windows Potassium bromide (KBr) (wedged)
Pressure gauges 3 MKS-690A Baratrons (1, 10 & 1000 Torr)

(70.05% accuracy)
Thermometry 4 PRTs, Labfacility IEC 751 Class A

a Due to the non-linear response of MCT detectors to the detected
radiation, all interferograms were Fourier transformed using Bruker's
OPUS software with a non-linearity correction applied.

Table 2
Summary of the sample conditions for all measurements.

Temperature (K) Initial CCl4
pressure
(Torr)a

Total pressure
(Torr)

Spectral reso-
lution (cm�1)b

208.070.2 �0.20 7.50170.008 0.010
208.070.2 �0.20 50.9270.15 0.015
207.970.2 �0.20 99.3270.83 0.015
208.070.3 �0.20 199.470.2 0.030
207.970.3 �0.20 348.571.1 0.030
217.470.3 0.505 7.52370.008 0.010
217.370.3 0.495 51.4470.08 0.015
217.370.3 0.495 99.9570.08 0.015
217.570.3 0.505 199.570.3 0.030
217.570.3 0.505 399.270.8 0.030
233.170.3 0.830 7.50170.015 0.010
233.170.2 0.830 49.9270.02 0.015
233.070.2 0.750 99.7870.08 0.015
233.070.2 0.784 201.570.1 0.030
233.070.2 0.750 401.570.2 0.030
251.370.2 0.810 7.50170.008 0.010
251.370.2 0.742 50.8670.2 0.015
251.370.2 0.723 199.770.1 0.030
251.270.2 0.737 400.270.2 0.030
251.270.2 0.780 600.670.3 0.030
273.170.2 0.606 7.53870.023 0.010
273.170.2 0.716 172.970.2 0.030
273.170.2 0.717 351.570.2 0.030
273.170.2 0.717 759.270.2 0.030
296.470.5 0.809 350.570.3 0.030
295.770.5 0.679 760.070.8 0.030

a MKS-690A Baratron readings are accurate to 70.05%.
b Using the Bruker definition of 0.9/MOPD.
[23,24]). After generation of transmittance spectra from
measured interferograms, the wavenumber scale is cali-
brated against the positions of isolated N2O absorption
lines taken from the HITRAN 2012 database [20]. Next,
using a successful approach developed previously (e.g.
[23,24]), absorption cross sections are derived and cali-
brated against a “calibration standard” integrated band
strength. This is necessary to counter problems with car-
bon tetrachloride adsorption in the vacuum line and on
the cell walls, resulting in its partial pressure during each
measurement differing from the initial, measured value.

Previous absorption cross sections created for ACE-FTS
retrievals have had their integrated band strengths cali-
brated using data from the Pacific Northwest National
Laboratory (PNNL) IR database (http://nwir.pnl.gov) [25].
However, data from the National Institute of Standards and
Technology (NIST) Quantitative Infra-red Database (http://
webbook.nist.gov/chemistry/quant-ir/) [26] are also sui-
table as calibration standards. Surprisingly, it was found
that for carbon tetrachloride, the NIST integrated band
strength (between 700 and 860 cm�1) is 5.4% higher than
that for PNNL. The main difference between the CCl4
spectra in the two databases is that the NIST measure-
ments were made using flow-through samples in a White
cell, with the PNNL measurements employing a static
sample cell. For the purposes of the ACE-FTS retrievals in
Section 4, it was found that calibrating to the NIST inten-
sities resulted in a better agreement with ground-based
measurements. Therefore, the absolute intensity of the
absorption cross sections, σ(υ,Pair,T), at wavenumber υ

(cm�1), temperature T (K) and synthetic air pressure Pair,
was calibrated according to

Z860 cm� 1

700 cm� 1

σðυ; Pair; TÞ∂υ¼ 6:7163� 10�17 cm molecule�1; ð1Þ

where the value on the right hand side is the integrated
band intensity over the spectral range 700–860 cm�1 for
the composite 760-Torr-N2-broadened CCl4 NIST spectrum
at 296 K.

3.3. Absorption cross section uncertainties

The wavenumber accuracy, i.e. uncertainty in x, of the
new absorption cross sections is comparable to the accu-
racy of the N2O lines used in the calibration; HITRAN error
codes indicate this is between 0.001 and 0.0001 cm�1.

Since only one spectrum is recorded at each PT com-
bination, due to time constraints, it is not possible to
obtain an estimate of the y-axis random errors. However,
systematic errors are believed to make the dominant
contribution to the uncertainty in y. Maximum uncer-
tainties in the sample temperatures (μT) and total pres-
sures (μP) are 0.2% and 0.8%, respectively (Table 2). The
photometric uncertainty (μphot) is estimated to be �2%.
The pathlength error (μpath) is estimated to be negligibly
small, lower than 0.1%. The systematic error, μNIST, in the
NIST CCl4 spectrum used for intensity calibration is 2.1%.
Assuming that the error estimates for all quantities are
uncorrelated, the overall systematic error in the dataset

http://nwir.pnl.gov
http://webbook.nist.gov/chemistry/quant-ir/
http://webbook.nist.gov/chemistry/quant-ir/
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can be calculated from:

μ2systematic ¼ μ2NISTþμ2Tþμ2Pþμ2phot: ð2Þ
Note that using a NIST spectrum for intensity calibra-

tion effectively nullifies the errors in the CCl4 partial
pressures and cell pathlength, so these do not have to be
included in Eq. (2). According to Eq. (2), the systematic
error contribution, μsystematic, to the new cross sections is
�3%.

3.4. Comparison between absorption cross-section datasets

This section provides a comparison between the new
dataset presented as part of this work and the older
Nemtchinov dataset. This comparison will focus on the
quality of the datasets in terms of their spectral resolution,
signal-to-noise ratio, integrated band strength, wave-
number scale, and PT coverage. This new dataset is avail-
able electronically from the first author, and will be made
available to the community via the HITRAN and GEISA
databases. Preliminary retrievals from the ACE-FTS
instrument using the new spectroscopic dataset are pre-
sented in Section 4.

3.4.1. Spectral resolution
All spectra used to create the Nemtchinov cross-section

dataset were recorded at 0.03 cm�1 spectral resolution.
While such a resolution is appropriate for high-pressure
measurements, it leaves much of the fine structure under-
resolved when the total pressure of the sample mixture is
low. This is well illustrated in Figs. 2 and 3, which compare
selected spectral ranges of the new cross section at 208.0 K
and 7.501 Torr with the Nemtchinov cross section at
207.9 K and 8.22 Torr. For the new measurements, reso-
lutions between 0.01 and 0.03 cm�1 were used, depending
on the total pressure of the mixture gas.

3.4.2. Signal-to-noise ratios (SNRs)
The SNRs of the new transmittance spectra, calculated

using Bruker's OPUS software at �840 cm�1 where the
transmittance is close to 1, range from 800–1600 (rms). A
direct comparison between the SNRs of the two absorption
cross-section datasets is somewhat misleading because of
the incorrectly chosen spectral resolution used for a
number of Nemtchinov measurements. Whereas the SNRs
are comparable for all the 0.03 cm�1 measurements, the
new measurements at 0.01 cm�1 are noisier than the
Fig. 2. The new IR absorption cross section of carbon tetrachloride/dry synthe
Nemtchinov [18] at 207.9 K and 8.22 Torr overlaid.
Nemtchinov measurements at 0.03 cm�1 by at most a
factor of two. This has minimal impact for remote-sensing
applications, however, given the overall high SNR of the
new dataset.

3.4.3. Integrated band strengths
In order to compare integrated band strengths between

datasets, integrals have been calculated over the spectral
range of the Nemtchinov cross-section files, 750–
812 cm�1. This wavenumber range, however, does not
extend far enough to obtain a true measure of the baseline
position for comparison with the new dataset. Fig. 4 is a
plot of integrated band strength (without error bars for
clarity) against temperature for each dataset. The
Nemtchinov integrated band strengths display a spread in
values, likely resulting from baseline inconsistencies in
these cross sections. The apparent temperature depen-
dence in the new measurements is an artefact caused by
the narrower spectral range of the integrals. When calcu-
lated over the range 700–860 cm�1, integrated band
strengths for the new cross sections correspond to
6.7163�10�17 cm molecule�1, as given in Eq. (1), for all
temperatures.

3.4.4. Wavenumber scale
As with other absorption cross-section datasets pro-

duced from the same laboratory, e.g. HFC-134a [27], CFC-
12 [24], and HCFC-22 [28], the wavenumber scale for the
Nemtchinov dataset is not accurate; it appears not to have
been calibrated. The dataset presented in this work has
been calibrated against the positions of isolated N2O
absorption lines in the HITRAN 2012 database [20]. The
difference in wavenumber scales is illustrated in
Figs. 2 and 3, which compare the new cross section at
208.0 K and 7.501 Torr with the Nemtchinov cross section
at 207.9 K and 8.22 Torr. In this case the Nemtchinov cross
section is shifted too low by �0.010 cm�1 (a correction
factor of �1.000013).

3.4.5. Pressure–temperature coverage
An absorption cross-section dataset used in remote

sensing should cover all possible combinations of pressure
and temperature appropriate for the region of the atmo-
sphere being observed; it is more accurate to interpolate
between cross sections rather than extrapolate beyond
them. Fig. 5 provides a graphical representation of the PT
combinations for both datasets. It shows clearly that the
tic air (part of the ν1þ ν4 band) at 208.0 K and 7.501 Torr, with that of



Fig. 3. The new IR absorption cross section of carbon tetrachloride/dry synthetic air (part of the ν3 band) at 208.0 K and 7.501 Torr, with that of Nemtchinov
[28] at 207.9 K and 8.22 Torr overlaid.

Fig. 4. A plot of integrated band strength versus temperature for each of
the datasets over the wavenumber range 750–812 cm�1. Also included
for comparison is an indication of the integrated band strength over the
range 700–860 cm�1 (this work), which is defined to be temperature
independent.

Fig. 5. A graphical representation of the PT coverage for both the new
and Nemtchinov [18] datasets.
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new dataset presented in this work greatly extends the PT
coverage (26 PT combinations in total). Ideally, the dataset
should cover temperatures down to 190 K; however, as
noted by Nemtchinov and Varanasi [18], due to the sharp
drop-off in CCl4 vapour pressure below 208 K, it is not
possible to record a spectrum below this temperature
using a 26-cm-pathlength sample cell.
4. New ACE-FTS retrieval

As touched on in the Introduction, the ACE-FTS v3.0/
v3.5 CCl4 retrieval is biased high by up to �20–30% rela-
tive to ground measurements. Note that the CCl4 retrieval
scheme is identical for the v3.0 and v3.5 datasets, the
difference being in the meteorological data used as input
for the pressure and temperature retrievals (the lowest
ACE-FTS levels use these data directly). Due to an error in
these inputs, v3.0 data should only be used for measure-
ments taken until the end of September 2010, while v3.5 is
valid for all ACE-FTS measurements. This section outlines
an improved, preliminary ACE-FTS CCl4 retrieval, which
addresses the problem of the high bias. The retrieval is
based on version 3.5 of the ACE-FTS retrieval software [29],
with new CCl4 spectroscopy (this work), updated micro-
windows, additional interfering species, and a new ILS [30]
designed for the upcoming v4.0 processing. (The use of
this new ILS, instead of that for v3.0/v3.5, reduces
systematic errors in the retrieved VMRs arising from the
ILS contributions to the residuals.)

The new microwindow set (listed in Table 3) consists of
35 microwindow ‘slices’ across the broad CCl4 spectral
feature, with a common set of baseline parameters (a
scaling factor and a slope for the baseline are included in
the least-squares analysis). These slices were chosen so as
to avoid regions of bad spectral residuals, for instance near
the 792 cm�1 Q branch of CO2 (11101-10002 transition),
which suffers from strong line mixing effects that the
software is not currently equipped to calculate [6], and
near numerous H2O lines, where current spectroscopic
line parameters are unable to provide the required accu-
racy. The altitude limits of the microwindows vary with
latitude according to the phenomenological expression
sin2(latitude°), to reflect the latitude dependence at lower
altitudes of the saturation of spectral features in the
microwindows, and at upper altitudes of the variation in
CCl4 abundance. An additional eight microwindows are
included to improve the retrievals of various interferers,
because the least-squares process can prematurely con-
verge before reaching the optimal solution if the infor-
mation content for one or more of the fitting parameters is
too low.

The ACE-FTS v3.5 retrieval procedure has been
explained previously [29]. In general, vertical VMR profiles
of trace gases (along with temperature and pressure) are
derived from the recorded transmittance spectra via a
nonlinear least-squares global fit to the selected spectral
region(s) for all measurements within the altitude range of



Table 3
Summary of the microwindows used in the new ACE-FTS CCl4 retrieval.

Centre frequency (cm�1) Microwindow width (cm�1) Lower altitude (km) Upper altitude (km)

772.17 0.38 8�2sin2(latitude°) 30�5sin2(latitude°)
773.53 0.70 8�2sin2(latitude°) 30�5sin2(latitude°)
780.10 0.40 8�2sin2(latitude°) 30�5sin2(latitude°)
780.77 0.30 8�2sin2(latitude°) 30�5sin2(latitude°)
781.26 0.32 8�2sin2(latitude°) 30�5sin2(latitude°)
785.99 0.34 8�2sin2(latitude°) 30�5sin2(latitude°)
787.41 0.34 8�2sin2(latitude°) 30�5sin2(latitude°)
788.85 0.38 8�2sin2(latitude°) 30�5sin2(latitude°)
793.20 0.60 8�2sin2(latitude°) 30�5sin2(latitude°)
793.80 0.36 13�2sin2(latitude°) 30�5sin2(latitude°)
794.81 0.90 8�2sin2(latitude°) 30�5sin2(latitude°)
795.90 0.80 15�2sin2(latitude°) 30�5sin2(latitude°)
796.60 0.40 10�2sin2(latitude°) 30�5sin2(latitude°)
797.23 0.26 8�2sin2(latitude°) 30�5sin2(latitude°)
797.55 0.30 13�2sin2(latitude°) 30�5sin2(latitude°)
797.84 0.20 9�2sin2(latitude°) 11�2sin2(latitude°)
797.95 0.30 11�2sin2(latitude°) 30�5sin2(latitude°)
798.27 0.30 15�2sin2(latitude°) 30�5sin2(latitude°)
798.75 0.30 15�2sin2(latitude°) 30�5sin2(latitude°)
799.05 0.30 13�2sin2(latitude°) 30�5sin2(latitude°)
799.54 0.32 8�2sin2(latitude°) 30�5sin2(latitude°)
800.53 0.50 8�2sin2(latitude°) 30�5sin2(latitude°)
801.05 0.34 8�2sin2(latitude°) 30�5sin2(latitude°)
801.32 0.24 13�2sin2(latitude°) 30�5sin2(latitude°)
801.83 0.26 13�2sin2(latitude°) 30�5sin2(latitude°)
802.15 0.30 8�2sin2(latitude°) 30�5sin2(latitude°)
802.56 0.28 8�2sin2(latitude°) 30�5sin2(latitude°)
802.83 0.26 13�2sin2(latitude°) 30�5sin2(latitude°)
803.52 0.44 15�2sin2(latitude°) 30�5sin2(latitude°)
805.10 0.32 8�2sin2(latitude°) 30�5sin2(latitude°)
807.26 0.40 8�2sin2(latitude°) 30�5sin2(latitude°)
808.95 0.30 8�2sin2(latitude°) 30�5sin2(latitude°)
809.65 0.30 8�2sin2(latitude°) 30�5sin2(latitude°)
810.30 0.40 8�2sin2(latitude°) 30�5sin2(latitude°)
811.19 0.26 8�2sin2(latitude°) 30�5sin2(latitude°)
806.25 a 1.10 8�2sin2(latitude°) 20
809.38 b 0.40 20 30�5sin2(latitude°)
829.03 c 0.50 10 20
1977.60 d 0.50 9�3sin2(latitude°) 21
1950.10 e 0.35 12�4sin2(latitude°) 15�2sin2(latitude°)
1986.09 f 0.30 8�sin2(latitude°) 22
2620.81 g 0.45 8�2sin2(latitude°) 20
2976.80 h 0.40 9 20

a Included to improve results for interferer H2
16O.

b Included to improve results for interferer CO2.
c Included to improve results for interferer HCFC-22.
d Included to improve results for interferer H2

18O.
e Included to improve results for interferer H2

16O.
f Included to improve results for interferer H2

17O.
g Included to improve results for interferer CO18O.
h Included to improve results for interferer C2H6.
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interest. For the CCl4 retrievals carried out for this work,
the atmospheric pressure and temperature profiles and
the tangent heights of the measurements were taken from
the v3.5 processing of the ACE-FTS data. The abundances
of most molecules with absorption features in the micro-
windows (see Table 4) were adjusted simultaneously with
the CCl4 VMR. A weak contribution for CFC-13 (CClF3),
which is not listed in Table 4 as its VMR was not adjusted
during the retrieval, was calculated based on abundances
measured via in-situ studies. Spectroscopic line para-
meters and absorption cross sections for most molecules
were taken from the HITRAN 2012 database [20], with the
exception of HCFC-22 [28], CFC-113 [31], and CHCl3
(PNNL). An ACE-FTS transmittance spectrum (from occul-
tation ss8706) over the range 772–812 cm�1 is plotted in
Fig. 6, along with several residual plots which provide an
indication of the retrieval quality.

For the purposes of this work, a subset of 527 ACE-FTS
occultations, covering March and April 2005 and providing
a good coverage over all latitudes, was processed by the
retrieval software. Fig. 7 is a plot of median VMR profiles in
each of nine 20° latitude bins (from south to north, each
bin contains 63, 64, 37, 45, 63, 74, 55, 69 and 57 profiles
respectively); errors at each altitude are calculated as 71
MAD (median absolute deviation). Overlaid on each plot is
the corresponding v3.0/v3.5 median profile (without error



Table 4
Summary of the molecules included in the microwindows for the new ACE-FTS CCl4 retrieval.

Molecule Lower altitude limit (km) Upper altitude limit (km) Nature of spectroscopic data

ClONO2 8�2sin2(latitude°) 30�5sin2(latitude°) Cross sections
CHClF2 (HCFC-22) 8�2sin2(latitude°) 20 Cross sections
C2Cl3F3 (CFC-113) 8�2sin2(latitude°) 20 Cross sections
H2

16O 8�2sin2(latitude°) 30�5sin2(latitude°) Line parameters
H2

18O 8�2sin2(latitude°) 21 Line parameters
C2H5ONO2 (PAN) 8�2sin2(latitude°) 20 Cross sections
HO2NO2 8�2sin2(latitude°) 30�5sin2(latitude°) Cross sections
H2

17O 8�2sin2(latitude°) 22 Line parameters
12C16O2 8�2sin2(latitude°) 30�5sin2(latitude°) Line parameters
13C16O2 8�2sin2(latitude°) 30�5sin2(latitude°) Line parameters
12C16O18O 8�2sin2(latitude°) 20 Line parameters
O3 8�2sin2(latitude°) 30�5sin2(latitude°) Line parameters
NO2 8�2sin2(latitude°) 20 Line parameters
HNO3 8�2sin2(latitude°) 25 Line parameters
HCN 8�2sin2(latitude°) 25�5sin2(latitude°) Line parameters
COF2 8�2sin2(latitude°) 30�5sin2(latitude°) Line parameters
CHCl3 8�2sin2(latitude°) 20 Cross sections
C2H6 8�2sin2(latitude°) 20 Line parameters
C2H2 8�2sin2(latitude°) 21 Line parameters

Fig. 6. Top panel: an ACE-FTS transmittance spectrum over the 772–812 cm�1 region for occultation ss8706 (recorded on 25 March 2005, off the coast of
northern Scotland) at a tangent height of 8.60 km. The features in red represent the microwindows used in the new CCl4 retrieval. Middle panel: the total
observed – calculated residuals for the CCl4 retrieval. Bottom panel: Observed/calculated ratio (without the inclusion of CCl4 in the forward model), with
the calculated CCl4 transmittance contribution to the measurement overlaid. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 7. A plot of median CCl4 VMR profiles in nine 20° latitude bins from the new processing of a subset of 527 ACE-FTS occultations measured during
March and April 2005 (in black). The errors at each altitude are calculated as 71 MAD (median absolute deviation). Overlaid on each plot is the corre-
sponding v3.0/v3.5 median profile (in blue; without error bars for clarity) for the same occultations. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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bars for clarity) for the same occultations. Unavoidably, by
reducing the total wavenumber coverage of combined
microwindows (the v3.0/v3.5 retrieval utilises a single CCl4
microwindow of 787.50–805.50 cm�1), the VMRs
retrieved using the new scheme are noisier than was
observed with v3.0/v3.5, however they are certainly more
accurate; this accuracy can be assessed by comparison
with ground measurements from early 2005. Based on
data from the 2010 ozone assessment report [32], in par-
ticular Figure 1-1, mean global surface mixing ratios of
CCl4 at the time of the ACE-FTS measurements range from
92–95 ppt. With an atmospheric lifetime of 44 years [33]
due to stratospheric loss, meaning that CCl4 is well-mixed
in the troposphere, these surface VMRs should be repre-
sentative of those in the free troposphere. As shown by
Fig. 7, these values compare well with retrieved ACE-FTS
VMRs in the upper tropical troposphere (30°S and 30°N),
where the air is relatively young. (Note that if the cross
sections had been scaled using PNNL spectra, the retrieved
VMRs would be on average 5.4% higher, and agreement
with ground measurements worse.) However, there is an
unphysical ‘kink’ in the upper tropospheric profile
between 10°S and 10°N. It is possible that this is caused by
strong water absorption contaminating the selected
retrieval microwindows; water is typically much more
abundant in the tropics compared to other regions. This
will be investigated prior to the upcoming v4.0 processing.

The improvement in retrieval accuracy relative to v3.0/
v3.5 can be attributed directly to the new cross sections
and the changes made to the retrieval scheme. Disen-
tangling the individual contributions to the systematic
differences between profiles for the two schemes is
beyond the scope of this work, however based purely on
integrated band strengths the new CCl4 cross sections lead
to �8% lower VMRs. It is likely that the new v4.0 ILS
makes only a relatively small contribution of several per-
cent to the improvement. The sizes of these systematic
differences vary for different profiles, depending on, for
example, the concentrations of interferers that are either
missing from the forward model or represented by
inadequate spectroscopy (in v3.0/v3.5), as well as the dif-
ferences between the interpolated CCl4 cross sections used
for the two schemes. Since a number of the interferers
inadequately characterised in the v3.0/v3.5 retrieval have
larger concentrations in the troposphere, e.g. PAN which
was not included in v3.0/v3.5, the systematic differences
are larger in the troposphere.



Fig. 8. A CCl4 zonal median VMR cross-section plot for March/April 2005, constructed from 527 ACE-FTS VMR profiles assigned into 10° latitude bins.
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Median profiles for the 527 ACE-FTS CCl4 VMR profiles
assigned into 10° latitude bins have been used to construct
a CCl4 zonal median VMR cross-section plot for March/
April 2005 (Fig. 8); this provides an alternative means of
viewing the data from Fig. 7. Those data points within the
tropical troposphere (fewer than ten points in total) which
deviate significantly from neighbouring values were
removed and replaced by averages of these neighbouring
VMRs. The plot in Fig. 8 illustrates clearly that CCl4 VMRs
decrease more rapidly with increasing altitude in the high-
latitude/polar regions, reflecting the large-scale circulation
of air around the globe, in which tropospheric air ascends
into the stratosphere over the tropics and descends into
the troposphere towards the poles.

The new retrieval scheme described in this work will
form the basis for the CCl4 retrieval in the upcoming
processing version 4.0 of ACE-FTS data. This processing
version will feature a new pressure and temperature
retrieval, which will further improve the CCl4 data product
and provide more accurate trends.
5. Conclusions

New high-resolution IR absorption cross sections for
air-broadened carbon tetrachloride have been determined
over the spectral range 700–860 cm�1, with an estimated
uncertainty of �3%. Spectra were recorded for mixtures of
CCl4 with dry synthetic air in a 26-cm-pathlength cell at
spectral resolutions between 0.01 and 0.03 cm�1 (calcu-
lated as 0.9/MOPD) over a range of temperatures and
pressures appropriate for upper troposphere – lower
stratosphere conditions (7.5–760 Torr and 208–296 K).
Intensities were calibrated against a CCl4 spectrum in the
NIST IR database. These new cross sections improve upon
those currently available in the HITRAN and GEISA data-
bases; namely they cover a wider range of pressures and
temperatures, they have a more accurately calibrated
wavenumber scale, they have more consistent integrated
band intensities, and they were derived from spectra
recorded at appropriate spectral resolutions.

It has been demonstrated that the new absorption cross
sections, coupled with improvements in the microwindow
selection, the addition of new interfering species, and a new
ILS, lead to a more accurate ACE-FTS retrieval than v3.0/v3.5. It
is important to note that the improvements made to the CCl4
retrieval scheme arise predominantly from spectroscopic
considerations. The revised CCl4 absorption cross sections
contribute about an 8% reduction in the bias relative to v3.0/
v3.5 (based on a simple comparison of integrated band
strengths). The rest of the bias has been reduced by the careful
selection of microwindows based on sound spectroscopic
judgement, and ensuring that spectral regions in which the
line parameters of interfering species do not adequately cal-
culate the measured ACE-FTS spectra are not included in the
retrieval. A similar approach can be extended to CCl4 retrievals
from atmospheric IR spectra recorded by other remote-
sensing instruments, e.g. MIPAS. The preliminary scheme
outlined in this work will form the basis for the upcoming
processing version 4.0 of ACE-FTS data.
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