12 research outputs found

    Reproducible Deep-UV SERRS on Aluminum Nanovoids

    No full text
    Surface-enhanced Raman scattering (SERS) with deep-UV excitation is of particular interest because a large variety of biomolecules such as amino acids exhibit electronic transitions in the UV spectral range and resonant excitation dramatically increases the cross section of the associated vibrational modes. Despite its potential, UV-SERS is still little-explored. We present a novel straightforward scalable route to fabricate aluminum nanovoids for reproducible SERS in the deep-UV without the need of expensive lithographic techniques. We adopt a modified template stripping method utilizing a soluble template and self-assembled polymer spheres to create nanopatterned aluminum films. We observe high surface enhancement of approximately 6 orders of magnitude, with excitation in the deep-UV (244 nm) on structures optimized for this wavelength. This work thus enables sensitive detection of organics and biomolecules, normally nonresonant at visible wavelengths, with deep-UV surface-enhanced resonant Raman scattering on reproducible and scalable substrates

    Quantitative SERS Using the Sequestration of Small Molecules Inside Precise Plasmonic Nanoconstructs

    No full text
    We show how the macrocyclic host, cucurbit[8]­uril (CB[8]), creates precise subnanometer junctions between gold nanoparticles while its cavity simultaneously traps small molecules; this enables their reproducible surface-enhanced Raman spectroscopy (SERS) detection. Explicit shifts in the SERS frequencies of CB[8] on complexation with guest molecules provides a direct strategy for absolute quantification of a range of molecules down to 10<sup>–11</sup> M levels. This provides a new analytical paradigm for quantitative SERS of small molecules

    In Situ SERS Monitoring of Photochemistry within a Nanojunction Reactor

    No full text
    We demonstrate a powerful SERS-nanoreactor concept composed of self-assembled gold nanoparticles (AuNP) linked by the sub-nm macrocycle cucurbit­[<i>n</i>]­uril (CB­[<i>n</i>]). The CB­[<i>n</i>] functions simultaneously as a nanoscale reaction vessel, sequestering and templating a photoreaction within, and also as a powerful SERS-transducer through the large field enhancements generated within the nanojunctions that CB­[<i>n</i>]­s define. Through the enhanced Raman fingerprint, the real-time SERS-monitoring of a prototypical stilbene photoreaction is demonstrated. By choosing the appropriate CB­[<i>n</i>] nanoreactor, selective photoisomerism or photodimerization is monitored in situ from within the AuNP-CB­[<i>n</i>] nanogap

    Mapping Atomic-Scale Metal–Molecule Interactions: Salient Feature Extraction through Autoencoding of Vibrational Spectroscopy Data

    No full text
    Atomic-scale features, such as step edges and adatoms, play key roles in metal–molecule interactions and are critically important in heterogeneous catalysis, molecular electronics, and sensing applications. However, the small size and often transient nature of atomic-scale structures make studying such interactions challenging. Here, by combining single-molecule surface-enhanced Raman spectroscopy with machine learning, spectra are extracted of perturbed molecules, revealing the formation dynamics of adatoms in gold and palladium metal surfaces. This provides unique insight into atomic-scale processes, allowing us to resolve where such metallic protrusions form and how they interact with nearby molecules. Our technique paves the way to tailor metal–molecule interactions on an atomic level and assists in rational heterogeneous catalyst design

    Controllable Multimodal Actuation in Fully Printed Ultrathin Micro-Patterned Electrochemical Actuators

    No full text
    Submillimeter or micrometer scale electrically controlled soft actuators have immense potential in microrobotics, haptics, and biomedical applications. However, the fabrication of miniaturized and micropatterned open-air soft actuators has remained challenging. In this study, we demonstrate the microfabrication of trilayer electrochemical actuators (ECAs) through aerosol jet printing (AJP), a rapid prototyping method with a 10 μm lateral resolution. We make fully printed 1000 × 5000 × 12 μm3 ultrathin ECAs, each of which comprises a Nafion electrolyte layer sandwiched between two poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrode layers. The ECAs actuate due to the electric-field-driven migration of hydrated protons. Due to the thinness that gives rise to a low proton transport length and a low flexural rigidity, the printed ECAs can operate under low voltages (∼0.5 V) and have a relatively fast response (∼seconds). We print all the components of an actuator that consists of two individually controlled submillimeter segments and demonstrate its multimodal actuation. The convenience, versatility, rapidity, and low cost of our microfabrication strategy promise future developments in integrating arrays of intricately patterned individually controlled soft microactuators on compact stretchable electronic circuits

    Controllable Multimodal Actuation in Fully Printed Ultrathin Micro-Patterned Electrochemical Actuators

    No full text
    Submillimeter or micrometer scale electrically controlled soft actuators have immense potential in microrobotics, haptics, and biomedical applications. However, the fabrication of miniaturized and micropatterned open-air soft actuators has remained challenging. In this study, we demonstrate the microfabrication of trilayer electrochemical actuators (ECAs) through aerosol jet printing (AJP), a rapid prototyping method with a 10 μm lateral resolution. We make fully printed 1000 × 5000 × 12 μm3 ultrathin ECAs, each of which comprises a Nafion electrolyte layer sandwiched between two poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrode layers. The ECAs actuate due to the electric-field-driven migration of hydrated protons. Due to the thinness that gives rise to a low proton transport length and a low flexural rigidity, the printed ECAs can operate under low voltages (∼0.5 V) and have a relatively fast response (∼seconds). We print all the components of an actuator that consists of two individually controlled submillimeter segments and demonstrate its multimodal actuation. The convenience, versatility, rapidity, and low cost of our microfabrication strategy promise future developments in integrating arrays of intricately patterned individually controlled soft microactuators on compact stretchable electronic circuits

    Controllable Multimodal Actuation in Fully Printed Ultrathin Micro-Patterned Electrochemical Actuators

    No full text
    Submillimeter or micrometer scale electrically controlled soft actuators have immense potential in microrobotics, haptics, and biomedical applications. However, the fabrication of miniaturized and micropatterned open-air soft actuators has remained challenging. In this study, we demonstrate the microfabrication of trilayer electrochemical actuators (ECAs) through aerosol jet printing (AJP), a rapid prototyping method with a 10 μm lateral resolution. We make fully printed 1000 × 5000 × 12 μm3 ultrathin ECAs, each of which comprises a Nafion electrolyte layer sandwiched between two poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrode layers. The ECAs actuate due to the electric-field-driven migration of hydrated protons. Due to the thinness that gives rise to a low proton transport length and a low flexural rigidity, the printed ECAs can operate under low voltages (∼0.5 V) and have a relatively fast response (∼seconds). We print all the components of an actuator that consists of two individually controlled submillimeter segments and demonstrate its multimodal actuation. The convenience, versatility, rapidity, and low cost of our microfabrication strategy promise future developments in integrating arrays of intricately patterned individually controlled soft microactuators on compact stretchable electronic circuits

    Controllable Multimodal Actuation in Fully Printed Ultrathin Micro-Patterned Electrochemical Actuators

    No full text
    Submillimeter or micrometer scale electrically controlled soft actuators have immense potential in microrobotics, haptics, and biomedical applications. However, the fabrication of miniaturized and micropatterned open-air soft actuators has remained challenging. In this study, we demonstrate the microfabrication of trilayer electrochemical actuators (ECAs) through aerosol jet printing (AJP), a rapid prototyping method with a 10 μm lateral resolution. We make fully printed 1000 × 5000 × 12 μm3 ultrathin ECAs, each of which comprises a Nafion electrolyte layer sandwiched between two poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) electrode layers. The ECAs actuate due to the electric-field-driven migration of hydrated protons. Due to the thinness that gives rise to a low proton transport length and a low flexural rigidity, the printed ECAs can operate under low voltages (∼0.5 V) and have a relatively fast response (∼seconds). We print all the components of an actuator that consists of two individually controlled submillimeter segments and demonstrate its multimodal actuation. The convenience, versatility, rapidity, and low cost of our microfabrication strategy promise future developments in integrating arrays of intricately patterned individually controlled soft microactuators on compact stretchable electronic circuits

    Accurate Transfer of Individual Nanoparticles onto Single Photonic Nanostructures

    No full text
    Controlled integration of metallic nanoparticles (NPs) onto photonic nanostructures enables the realization of complex devices for extreme light confinement and enhanced light–matter interaction. For instance, such NPs could be massively integrated on metal plates to build nanoparticle-on-mirror (NPoM) nanocavities or photonic integrated waveguides (WGs) to build WG-driven nanoantennas. However, metallic NPs are usually deposited via drop-casting, which prevents their accurate positioning. Here, we present a methodology for precise transfer and positioning of individual NPs onto different photonic nanostructures. Our method is based on soft lithography printing that employs elastomeric stamp-assisted transfer of individual NPs onto a single nanostructure. It can also parallel imprint many individual NPs with high throughput and accuracy in a single step. Raman spectroscopy confirms enhanced light–matter interactions in the resulting NPoM-based nanophotonic devices. Our method mixes top-down and bottom-up nanofabrication techniques and shows the potential of building complex photonic nanodevices for multiple applications ranging from enhanced sensing and spectroscopy to signal processing

    Gap-Dependent Coupling of Ag–Au Nanoparticle Heterodimers Using DNA Origami-Based Self-Assembly

    No full text
    We fabricate heterocomponent dimers built from a single 40 nm gold and a single 40 nm silver nanoparticle separated by sub-5 nm gaps. Successful assembly mediated by a specialized DNA origami platform is verified by scanning electron microscopy and energy-dispersive X-ray characterization. Dark-field optical scattering on individual dimers is consistent with computational simulations. Direct plasmonic coupling between each nanoparticle is observed in both experiment and theory only for these small gap sizes, as it requires the silver dipolar mode energy to drop below the energy of the gold interband transitions. A new interparticle-spacing-dependent coupling model for heterodimers is thus required. Such Janus-like nanoparticle constructs available from DNA-mediated assembly provide an effective tool for controlling symmetry breaking in collective plasmon modes
    corecore