7 research outputs found

    Applying third-generation sequencing to pathogen surveillance and mixed infection detection

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2022One Health is the concept of interconnected health between plants, animals, humans, microorganisms and the environments they live in. One Health issues surround many important viral pathogens, including influenza, SARS-CoV-2, and Ebola, that have likely come from zoonotic spillovers. Genomic epidemiology combines pathogen genomes with metadata to forecast, track, and prepare for future pathogens and pathogen variants that may cause epidemics. Genomic epidemiology has been used to detect and track viral variants that have the potential to escape vaccines for viruses like porcine circovirus type 2 (PCV2). PCV2 causes porcine circovirus associated diseases (PCVAD), which results in weight loss and death in pigs around the world. The correlation between PCVAD and mixed infections shows that disease severity is linked to the microbial community in a host. Metagenomics allows researchers to sequence samples and sort out the individual community member genomes by bioinformatic analyses, allowing the study of the host microbiome. In this thesis, I tested if long read nanopore sequencing can uncover PCV2 diversity and reliably detect co-infections. I also assessed the accuracy and efficiency of long read metagenomic assemblers as a potential method for detecting mixed infections. In my first chapter, I found that nanopore sequencing can be used to understand PCV2 diversity and detect co-infections. This evidence shows that nanopore sequencing is a viable alternative to Sanger sequencing for PCV2 surveillance. In my second chapter, I found Flye built the most complete and accurate genomes for bacterial community members and their plasmids. Throughout my thesis I have shown that nanopore sequencing is a viable solution for modern surveillance. The lower cost of nanopore sequencing may allow more specific pathogen and metagenomic surveillance in regions with high risk of zoonotic spillovers, which may allow early detection of epidemic causing pathogens.National Institute of General Medical Sciences of the National Institutes of Health under awards UL1GM118991, TL4GM118992, RL5GM118990, Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant 2P20GM103395General introduction. Chapter 1: Genetic diversity of porcine circovirus 2 in wild boars and domestic pigs in Ukraine. Chapter 2: Accuracy and completeness of long read metagenomic assemblies. General Conclusions -- Appendix

    Accuracy and Completeness of Long Read Metagenomic Assemblies

    No full text
    Microbes influence the surrounding environment and contribute to human health. Metagenomics can be used as a tool to explore the interactions between microbes. Metagenomic assemblies built using long read nanopore data depend on the read level accuracy. The read level accuracy of nanopore sequencing has made dramatic improvements over the past several years. However, we do not know if the increased read level accuracy allows for faster assemblers to make as accurate metagenomic assemblies as slower assemblers. Here, we present the results of a benchmarking study comparing three commonly used long read assemblers, Flye, Raven, and Redbean. We used a prepared DNA standard of seven bacteria as our input community. We prepared a sequencing library using a VolTRAX V2 and sequenced using a MinION mk1b. We basecalled with Guppy v5.0.7 using the super-accuracy model. We found that increasing read depth benefited each of the assemblers, and nearly complete community member chromosomes were assembled with as little as 10× read depth. Polishing assemblies using Medaka had a predictable improvement in quality. We found Flye to be the most robust across taxa and was the most effective assembler for recovering plasmids. Based on Flye’s consistency for chromosomes and increased effectiveness at assembling plasmids, we would recommend using Flye in future metagenomic studies

    Seasonal influence of climate manipulation on microbial community structure and function in mountain soils

    No full text
    Microbial communities drive soil organic matter (SOM) decomposition through the production of a variety of extracellular enzymes. Climate change impact on soil microbial communities and soil enzymatic activities can therefore strongly affect SOM turnover, and thereby determine the fate of ecosystems and their role as carbon sinks or sources. To simulate projected impacts of climate change on Swiss Jura subalpine grassland soils, an altitudinal soil transplantation experiment was set up in October 2009. On the fourth year of this experiment, we measured microbial biomass (MB), microbial community structure (MCS), and soil extracellular enzymatic activities (EEA) of nine hydrolytic and oxidative extracellular enzymes in the transplanted soils on a seasonal basis. We found a strong sampling date effect and a smaller but significant effect of the climate manipulation (soil transplantation) on EEA. Overall EEA was higher in winter and spring but enzymes linked to N and P cycles showed higher potential activities in autumn, suggesting that other factors than soil microclimate controlled their pool size, such as substrate availability. The climate warming manipulation decreased EEA in most cases, with oxidative enzymes more concerned than hydrolytic enzymes. In contrast to EEA, soil MB was more affected by the climate manipulation than by the seasons. Transplanting soils to lower altitudes caused a significant decrease in soil MB, but did not affect soil MCS. Conversely, a clear shift in soil MCS was observed between winter and summer. Mass-specific soil EEA (EEA normalized by MB) showed a systematic seasonal trend, with a higher ratio in winter than in summer, suggesting that the seasonal shift in MCS is accompanied by a change in their activities. Surprisingly, we observed a significant decrease in soil organic carbon (SOC) concentration after four years of soil transplantation, as compared to the control site, which could not be linked to any microbial data. We conclude that medium term (four years) warming and decreased precipitation strongly affected MB and EEA but not MCS in subalpine grassland soils, and that those shifts cannot be readily linked to the dynamics of soil carbon concentration under climate change. (C) 2014 Elsevier Ltd. All rights reserved

    Genetic Diversity of Porcine Circovirus 2 in Wild Boar and Domestic Pigs in Ukraine.

    No full text
    Porcine circovirus type 2 (PCV2) is responsible for a number of porcine circovirus-associated diseases (PCVAD) that can severely impact domestic pig herds. For a non-enveloped virus with a small genome (1.7 kb ssDNA), PCV2 is remarkably diverse, with eight genotypes (a-h). New genotypes of PCV2 can spread through the migration of wild boar, which are thought to infect domestic pigs and spread further through the domestic pig trade. Despite a large swine population, the diversity of PCV2 genotypes in Ukraine has been under-sampled, with few PCV2 genome sequences reported in the past decade. To gain a deeper understanding of PCV2 genotype diversity in Ukraine, samples of blood serum were collected from wild boars (n = 107) that were hunted in Ukraine during the November-December 2012 hunting season. We found 34/107 (31.8%) prevalence of PCV2 by diagnostic PCR. For domestic pigs, liver samples (n = 16) were collected from a commercial market near Kharkiv in 2019, of which 6 out of 16 (37%) samples were positive for PCV2. We sequenced the genotyping locus ORF2, a gene encoding the PCV2 viral capsid (Cap), for 11 wild boar and six domestic pig samples in Ukraine using an Oxford Nanopore MinION device. Of 17 samples with resolved genotypes, the PCV2 genotype b was the most common in wild boar samples (10 out of 11, 91%), while the domestic pigs were infected with genotypes b and d. We also detected genotype b/d and b/a co-infections in wild boars and domestic pigs, respectively, and for the first time in Ukraine we detected genotype f in a wild boar from Poltava. Building a maximum-likelihood phylogeny, we identified a sublineage of PCV2 genotype b infections in both wild and domestic swine, suggesting a possible epizootic cluster and an ecological interaction between wild boar and domestic pig populations in northeastern Ukraine
    corecore