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Abstract

One Health is the concept of interconnected health between plants, animals, humans, 

microorganisms and the environments they live in. One Health issues surround many important 

viral pathogens, including influenza, SARS-CoV-2, and Ebola, that have likely come from 

zoonotic spillovers. Genomic epidemiology combines pathogen genomes with metadata to 

forecast, track, and prepare for future pathogens and pathogen variants that may cause epidemics. 

Genomic epidemiology has been used to detect and track viral variants that have the potential to 

escape vaccines for viruses like porcine circovirus type 2 (PCV2). PCV2 causes porcine 

circovirus associated diseases (PCVAD), which results in weight loss and death in pigs around 

the world. The correlation between PCVAD and mixed infections shows that disease severity is 

linked to the microbial community in a host. Metagenomics allows researchers to sequence 

samples and sort out the individual community member genomes by bioinformatic analyses, 

allowing the study of the host microbiome. In this thesis, I tested if long read nanopore 

sequencing can uncover PCV2 diversity and reliably detect co-infections. I also assessed the 

accuracy and efficiency of long read metagenomic assemblers as a potential method for detecting 

mixed infections. In my first chapter, I found that nanopore sequencing can be used to 

understand PCV2 diversity and detect co-infections. This evidence shows that nanopore 

sequencing is a viable alternative to Sanger sequencing for PCV2 surveillance. In my second 

chapter, I found Flye built the most complete and accurate genomes for bacterial community 

members and their plasmids. Throughout my thesis I have shown that nanopore sequencing is a 

viable solution for modern surveillance. The lower cost of nanopore sequencing may allow more 

specific pathogen and metagenomic surveillance in regions with high risk of zoonotic spillovers, 

which may allow early detection of epidemic causing pathogens.
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General Introduction:

Many human pathogens of concern, such as influenza, SARS-CoV-2, and Ebola, have 

likely come from zoonotic spillovers and from animal reservoirs (Cunningham et al., 2017; 

Giovanetti et al., 2021). These spillovers and animal reservoirs show that our health is affected 

by the animals we come into contact with and the surrounding environment (Cunningham et al., 

2017). One Health is the concept of interconnected health between plants, animals, humans, 

microorganisms, and the environments they live in (Cunningham et al., 2017). A modern 

problem in animal disease that requires a One Health perspective to solve is the transmission of 

African swine fever virus (ASFV) throughout the pig industry (Gaudreault et al., 2020).

ASFV is a DNA virus that cause hemorrhagic fevers in domestic pigs in Europe and Asia 

(Cisek et al., 2016; Gaudreault et al., 2020). The mortality rate of AFSV infected pigs is between 

30% to 100% (Cisek et al., 2016). Transmission of ASFV to domestic pigs can occur through 

contaminated pork products, such as feeding food waste to pigs, soft ticks from the Ornithodoros 

genus, or through wild boar contact (Gaudreault et al., 2020). Through trade and wild boar 

migrations, the highly pathogenic p72 genotype II of ASFV has spread from Africa to Europe, 

China, and even across the ocean to the Dominican Republic (Gaudreault et al., 2020; USDA 

2021).

Halting trade in live pigs and pork products with countries with ASFV is an example of a 

biosecurity intervention that may reduce pathogen transmission (Kedkovid et al., 2020). 

However, this intervention will not prevent pathogen transmission through other means, such as 

wild boar migrations between countries. Implementation of effective biosecurity interventions 

requires knowledge of how a pathogen is transmitted.
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When pathogens replicate, the progeny receive copies of the parental genetic material 

(DNA or RNA), which may include mutations. These mutations in the progeny can distinguish a 

single progeny's lineage from other lineages that came from the parental genome (Gardy 2018). 

These mutations often fix within populations at regular rates and thus, act as a molecular clock 

that allows researchers to estimate when the progeny lineage diverged from the parent lineage 

(Gardy 2018). Mutations and molecular clocks allow for tracking of viral lineages and detecting 

changes in the viral lineages through time (Gardy 2018). Genomic epidemiology is the concept 

of using a pathogen's genome and metadata, such as time, location, and host type, to track the 

spread of pathogen lineages through a population (Gardy 2018; Hill et al., 2021). Another use for 

genomic epidemiology is identifying locations and events that have increased risk of pathogen 

transmission and alternative hosts that may transmit pathogens (Gardy 2018). Once the method 

and mode of transmission of a pathogen is known, effective biosecurity interventions can be 

applied to reduce further pathogen transmission.

Genomic epidemiology has been used to forecast future pathogen variants that may cause 

epidemics or pandemics, like in the SARS-CoV-2 pandemic (Hill et al., 2021). In the SARS- 

CoV-2 pandemic, genomic epidemiology has been used to identify SARS-CoV-2 variants that 

had increased pathogenicity before they became dominant variants in other countries (Giovanetti 

et al., 2021). This information may have given other countries advanced warning of potential 

SARS-CoV-2 waves. A country may use this information to prepare for a SARS-CoV-2 wave by 

stockpiling hospital supplies, limiting gatherings, and closing borders to countries with the 

variant of concern.

Genomic epidemiology has also been used to prepare for or prevent future epidemics of 

influenza (Hay and McCauley 2018). For influenza, genomic epidemiology is used to identify 
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variants that are common and likely to cause the next seasonal epidemic. These variants are then 

used to aid in vaccine design, several months before the typical Fall flu season in the Northern 

Hemisphere (Hay and McCauley 2018). This can allow for vaccines to be distributed early to at- 

risk populations, such as the elderly, before flu season, which reduces hospital cases and 

mortality in the elderly population (Hay and McCauley 2018). Both SARS-CoV-2 and influenza 

demonstrate how genomic epidemiology can help predict, prepare, and reduce the impact of 

future pathogens of concern at the global level.

Genomic epidemiology also aids in the detection of pathogens in otherwise isolated 

countries. An example being the spread of porcine circovirus type 2 (PCV2) into the island of 

Sardinia, Italy, which has no pig exports and little pig imports (Franzo et al., 2020). PCV2 causes 

a group of diseases known as porcine circovirus associated diseases (PCVAD) that can cause 

reduced weight gain, respiratory distress, abortions, and death in pigs (Karuppannan and 

Opriessnig 2017; Opriessnig and Langohr 2013). The globally distributed PCV2 can have a large 

economic impact when uncontrolled (Opriessnig et al., 2020). An example is PCV2 infections in 

the English pig industry, which was estimated to cost between 52 to 88 million euros yearly 

before heavy vaccine use in 2008 (Alarcon et al., 2013). Using genomic epidemiology, Franzo et 

al. (2020) tracked new lineages (genotypes) of PCV2 throughout the wild boar and domestic pig 

populations of Sardinia, and found that PCV2 introduction into Sardinia was likely by the small 

number of pig imports to backyard farms, which then infected wild boars (Franzo et al., 2020).

Genomic epidemiology requires genomic information, such as whole genome sequences, 

to analyze. However, whole genome sequencing may require the pathogen to be isolated, which 

is time consuming, or the use of metagenomics, which is expensive (Morris et al., 2019; 

Papaiakovou et al., 2022). An alternative to genome sequencing is genotyping, which uses one or 
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more partial or complete genes to determine a pathogens lineage (Janezic and Rupnik 2019). 

Using only a few genes allows more samples to be sequenced together, which reduces the 

sequencing cost (Papaiakovou et al., 2022). However, for viruses, genotyping often uses primers 

that are specific to a single pathogen or single family of pathogens, which prevents genotyping 

from identifying novel or unexpected pathogens (Janezic and Rupnik 2019).

After an epidemic or pandemic, genotyping has been used to detect viral variants that 

have the potential to escape known vaccines, one example being PCV2 (Franzo and Segales 

2020). Though PCVADs have been heavily reduced by vaccines, PCV2 transmission and 

PCVADs have not been completely prevented in vaccinated animals (Franzo and Segales 2020; 

Segales and Sibila 2022). As a result, there is strong selection pressure on PCV2 variants to 

escape the vaccine in vaccinated animals (Kekarainen et al., 2014). This selective pressure has 

resulted in surveillance of PCV2 being maintained in many countries (Franzo and Segales 2020; 

Xiao et al., 2016; Song et al., 2020; Franzo et al., 2020).

PCV2 has a circular, single-stranded DNA genome that is 1766 bases (nucelotides) long 

(Breitbart et al., 2017). The genome of PCV2 contains two major open reading frames (ORFs) 

and at least four other functional ORFs (Breitbart et al., 2017; He et al., 2013; Liu, Chen, and 

Kwang 2005; Lv et al., 2015; Li et al., 2018). ORF2 encodes for the capsid protein, which is 

targeted by the immune system, as evidenced by a higher substitution rate than the rest of the 

genome (Franzo and Segales 2020; Kekarainen et al., 2014). The high substitution rate in ORF2 

also makes this gene an appropriate target for measuring diversity. To date, eight PCV2 

genotypes (a-h) have been described (Franzo and Segales 2018).
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Though PCV2 is needed for a PCVAD to develop, PCV2 infections are often subclinical 

and do not develop into a PCVAD (Ouyang et al., 2019). To develop an overt PCVAD, it has 

been hypothesized that an animal needs to be infected with PCV2 and a bacterial pathogen 

(mixed infection) or other viruses (co-infection) (Ouyang et al., 2019). Sometimes co-infections 

can include other subclinical viruses, like porcine parvovirus, torque teno virus and other 

variants of PCV2 (Ouyang et al., 2019).

The correlation between PCVADs and mixed infections or co-infections shows that 

disease severity is linked to the bacterial and viral community in a host. Bacterial community 

members in a host can be found by sequencing the bacterial 16S rRNA gene or culturing (Bharti 

and Grimm 2021; Garmendía et al., 2012). Viral communities can be found by sequencing 

conserved genes or using assays that target multiple viral genes (Chiu and Miller 2019; Bharti 

and Grimm 2021). However, culturing takes multiple days to complete, and many microbes are 

difficult to culture, thus some pathogenic microbes might be missed (Garmendía et al., 2012). 

Amplification of 16S rRNA or other conserved genes may be limited to broad levels of 

classification (e.g., genus) and may not identify novel bacteria or viruses, respectively (Bharti 

and Grimm 2021). For viruses, sequence discovery may be limited to the virus families the assay 

is designed for and have limited ability to detect novel or unexpected viruses (Chiu and Miller 

2019).

One solution is metagenomics, in which all genetic material in a sample is sequenced 

without targeting specific pathogens, and the individual community members' genomes are 

assembled through bioinformatic analyses (Bai et al., 2022). Metagenomics has been used to 

detect new viruses and show possible correlations between disease and viruses, such as PCVAD 

and co-infections involving PCV2 and torque teno virus (Bai et al., 2022; Qin et al., 2018).
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Metagenomics has also been used to sequence and detect novel viruses that may be of concern, 

such as PCV3, which commonly co-infects with PCV2 and may contribute to PCVAD 

development (Chen et al., 2021; Palinski et al., 2017).In this thesis, I examined the reliability of 

long read sequencing for PCV2 genomic surveillance. I also extended my analysis to test how 

metagenomics could be used to sequence complex bacterial and viral communities. In Chapter 1, 

I tested if nanopore sequencing is a reliable option to detect PCV2 co-infections and measure 

diversity. In Chapter 2, I assessed the accuracy and efficiency of long read metagenomic 

assemblers as a potential method for detecting mixed infections.
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Chapter 1: Genetic Diversity of Porcine Circovirus 2 in Wild Boars and Domestic Pigs in

Ukraine.1

1 Article published as: Rudova, N.* *, J. Buttler*, G. Kovalenko, M. Sushko, V. Bolotin, L.
Muzykina, O. Zinenko, et al., 2022. “Genetic Diversity of Porcine Circovirus 2 in Wild
Boar and Domestic Pigs in Ukraine.” Viruses 14 (5). https://doi.org/10.3390/v14050924 .

* These authors contributed equally to this work

Abstract:

Between 2017 and 2021, the world produced 96 million to 112 million tons of pork per 

year. The pork industry uses vaccines to avoid the increased cost from animal death and weight 

loss caused by pathogens, such as porcine circovirus type 2 (PCV2). However, the PCV2 vaccine 

only reduces PCV2 infections, allowing for the possibility of escape variants to come from 

vaccinated pigs. New variants of PCV2 can spread within a country or to other countries through 

wild boar migration and the domestic pig trade. The last PCV2 surveillance study from Ukraine 

found genotypes a, b, d, and g in 2015.

To determine if other genotypes of PCV2 have circulated in Ukraine, we sequenced open 

reading frame 2, which encodes the capsid gene from 11 wild boar samples collected in 2012 and 

6 domestic pig samples collected in 2019 on a third-generation sequencer, a MinION (Oxford 

Nanopore Technologies). The most common PCV2 genotype within our samples was genotype 

b, with the next most common being genotype a in the 2013 wild boar samples and genotype d in 

the 2019 domestic pig samples.
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Introduction:

Between 2017 and 2021, the world produced 96 million to 112 million tons of pork per 

year (USDA 2021). The pork industry uses vaccines to avoid the increased cost from animal 

death and weight loss caused by pathogens, such as porcine circovirus type 2 (PCV2) (Gebhardt 

et al., 2020). PCV2 is often an asymptomatic infection that causes reduced weight gain.

However, when PCV2 is combined with other pathogens or even different PCV2 variants, PCV2 

can cause a group of diseases known as porcine circovirus associated diseases (PCAD) (Ouyang 

et al., 2019; Karuppannan and Opriessnig 2017). PCAD symptoms are often most severe in 

younger pigs and can include wasting, abortion, and death (Karuppannan and Opriessnig 2017).

Vaccines have heavily reduced PCAD and subclinical PCV2 symptoms and have even reduced 

PCV2 infections (Franzo and Segales 2020). However, vaccines have not prevented PCV2 

infections, which has led to an increased selection pressure for escape variants in vaccinated pigs 

(Franzo and Segales 2020).

PCV2 is a non-enveloped, icosahedral (T=1) capsid (Cap) virus that contains a single

stranded circular DNA genome that is 1766 bases (nucleotides) long (Breitbart et al., 2017). The 

genome of PCV2 contains two major open reading frames (ORFs), and at least four other 

functional ORFs (Breitbart et al., 2017; He et al., 2013; Liu et al., 2005; Lv et al., 2015; D. Li et 

al., 2018). ORF2 encodes the Cap gene and is used to determine which of the eight genotypes (a

h) a PCV2 isolate belongs to (Franzo and Segales 2018).

New PCV2 variants and genotypes can spread to other countries through wild boar 

migrations and by mixing of pigs from different farms (Franzo et al., 2020; Correa-Fiz et al., 

2020). The spread of PCV2 by the transfer of subclinically infected domestic pigs between farms 
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and wild boar migrations means that no country is isolated, instead all countries are a potential 

source, or at least at risk, of harboring new PCV2 variants. In order to detect new PCV2 variants 

that may replicate better in vaccinated pigs early, we need good surveillance across more than 

just a few countries. Despite modern surveillance of PCV2, there are still countries, such as 

Ukraine, that have not had surveillance on samples collected past 2015.

In 2015, Ukraine's major PCV2 genotype was b, with genotypes a, d, and g also in 

circulation (Kleymann et al., 2020). However, genotypes e, f, h, and i were not detected in 

Ukraine and genotype d was found to be rare in Ukraine (Dudar et al., 2018). Genotype d is 

currently a common, global genotype, which may replicate better in vaccinated pigs, and was 

rare before 2014 (Karuppannan and Opriessnig 2017; Xiao et al., 2016). Therefore, it is possible 

that genotype d would be rare in the samples on GenBank and the wild boar samples from Dudar 

et al., (2018), which were collected before 2014 and more common in recent samples, which are 

non-existent.

Our goal for this study was to determine if nanopore sequencing is a reliable option to 

genotype PCV2, detect co-infections, and contribute to understanding of viral diversity. We also 

wanted to discover if genotypes e, f, h, and i were in Ukraine. To determine if genotypes e, f, h, 

and i were in Ukraine, we estimated a phylogenetic tree using ORF2 sequences from GenBank, 

ORF2 sequences from archived Ukrainian wild boar samples, and ORF2 sequences from 

domestic pig samples collected in 2019 from Ukraine.
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Methods:

Study sites and Sequencing:

We sequenced PCV2 from viremic blood samples from archived wild boar samples 

collected in 2012 from Ukraine and viremic domestic pig liver samples collected from a local 

market in Karkhiv in 2019, using an Oxford Nanopore Technologies (ONT) MinION. The wild 

boar samples we sequenced came from the Chernihiv, Chernivtsi, Luhansk, Poltava, Volyn, and 

Zaporizhia oblasts (administrative districts) of Ukraine (Figure 1-1). All wild boar and domestic 

pig samples were collected opportunistically and thus, the health of the domestic pig or wild boar 

was not known during collection. For further details about sample collection or sample 

processing, see Rudova et al., (2019). We enriched for ORF2 and whole PCV2 genomes by PCR, 

using primers from Rudova et al., (2019) and Yang et al., (2018). All samples were sequenced 

using the LSK-109 library kit (Oxford Nanopore Technologies, Oxford, UK). We basecalled and 

demultiplexed the reads with Guppy version 3.5 (ONT) using the r941_min_hight_g351 model.

Database:

Our database used for co-infection detection and tree building contained 5862 ORF2 

sequences downloaded from GenBank. ORF2 sequences in our database were aligned with Mafft 

V7.407 (Katoh and Standley 2013) and manually inspected to remove sequences with early stop 

codons or incomplete reading frames with Geneious v2020.2.1 (Kearse et al., 2012). We 

removed natural and artificial recombinant sequences from the inspected ORF2 sequences with 

RDP4 v4.101 (Martin et al., 2015) using settings similar to (Franzo and Segales 2018). We then 

removed all gaps and stop codons in our remaining, aligned ORF2 sequences using Geneious 
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v2020.2.1. Our final database contained 429 ORF2 sequences (Table 0-2: Sequences after 

recombinant removal).

Figure 1-1: Ukraine sample collection map. Oblasts that contributed PCV2 ORF2 sequences to 

our study are labeled. A red * indicates an oblast that we collected wild boar sequences from. An 

orange + indicates an oblast we collected domestic pig samples from. The outline for our map 

was bought from https://freevectormaps.com/ukraine/UA-EPS-01-1002?ref=atr. The map of 

Europe was downloaded from Google Maps in 2021.
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Table 1-1: References used to identify genotypes. “-“ indicates that the reference was detected as

a recombinant genome and removed by RDP4. References are from Franzo and Segales (2018).

Reference Genotype In final database
HM038034 a yes
HQ202949 a -
KX828215 a yes
EU450638 b -
KP768478 b -
KY806003 b yes
KJ094599 c
EU148503 c
EU148504 c
MF314285 d
KX960929 d
KC515014 d yes
KT867799 e -
KT870147 e -
KT795280 e -
LC004750 f yes
HQ202949 f -
LC008135 f yes
KP420197 g yes
FJ998185 g -
JX099786 g -

We labeled the seven sequences listed in Table 1-1 that were in our final database with 

their genotype. Sequences in our database from Ukraine were also labeled with their country of 

origin and oblast they were sampled from.

Co-infection Detection:

We detected co-infections between different PCV2 variants by mapping reads to the 

ORF2 sequences in our database (See Figure 1-2 for a flowchart). To reduce the mis-binning of 

reads from a single variant to a group of very similar ORF2 sequences, we took a sub-sample of 

ORF2 sequences, with a maximum similarity of 98% between any two sequences from our 

database with cd-hits using parameter -c 0.98 (W. Li and Godzik 2006; Fu et al., 2012). The sub

sampled database had 66 ORF2 sequences.
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We mapped our reads to the ORF2 sequences in our sub-sampled database with 

minimap2 v2.22 (H. Li 2018) using parameters -ax map-ont. Low-quality reads were removed 

with samtools v1.14 (H. Li et al., 2009; Danecek et al., 2021), using parameters view -q 30 

(mapping quality), -min-qlen 2000 (min length), -e “avg(qual)>=30” (average Q-score), and -F 

0x04 (remove unmapped reads). The bam file from samtools was then split into separate bins by 

reference with bamtools v2.5.1 using parameter -reference 

(https://github.com/pezmaster31/bamtools). Each bin contained all the reads that were mapped to 

a single ORF2 sequence. We removed bins with fewer than 50 reads or fewer than 0.8% of reads 

that mapped to any PCV2 ORF2 sequence. Sequencing statistics for the remaining bins and un

binned reads were found using NanoStat --fastq (Coster et al., 2018).

We built consensus genomes from the remaining bins by polishing the best read from 

each bin with the reads in its bin (See Figure 1-2 for a flowchart). The 300 reads with the highest 

final score from the table output by filtlong v0.2 using parameter --verbose 

(https://github.com/rrwick/Filtlong) were extracted from their bin with grep using parameters -- 

no-group-separator -A 4. We then polished the read with the highest score using the remaining 

299 reads with one round of Racon v1.4.21 using parameters -m 8 -x 6 -g 8 -w 500 

(https://github.com/isovic/racon) and one round of Medaka v1.4.3 with the r941_min_high 

model (https://github.com/nanoporetech/medaka).

We detected and removed consensuses built from miss-binned reads by removing 

consensuses that were very similar. The number of mismatches and aligned length were found 

using a blastn (NCBI Resource Coordinators 2016) query of a consensus genome against all 

consensus genomes in a sample. When two or more consensus genomes had fewer than 1.5% 

mismatches (100 * number mismatches / aligned length), we kept the consensus genome with the
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most reads. We automated our co-infection detection pipeline using bash scripts

(https://github.com/jeremyButtler/find--Co-infections).

Figure 1-2: Co-infection pipeline steps.

Manual Curation:

We found references for manual curation by blasting each consensus against the PCV2 

database on GenBank (taxid: 85708). The top hit for each consensus was then used to detect and 

remove indels in the consensuses. We also checked and corrected reading frames using transeq 

from the emboss package v6.6 (Rice et al., 2000).

Maximum Likelihood Tree:

We made a maximum likelihood tree using IQtree (Hoang et al., 2018; Minh et al., 2020; 

Kalyaanamoorthy et al., 2017; Chernomor et al., 2016), our consensuses, and a sub-sample of 

our ORF2 sequence database. Sub-sampling was done with cd-hit using parameter -c 0.985 to 

reduce our database to a manageable size. After sub-sampling, the maximum difference for any 

two ORF2 sequences was 98.5%. We added ORF2 sequences from Ukraine that were removed 
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by sub-sampling back into our sub-sampled database. We estimated a consensus tree with IQtree 

v1.6.12 (Hoang et al., 2018; Minh et al., 2020; Kalyaanamoorthy et al., 2017; Chernomor et al., 

2016) using parameters -st CODON -m MFP+MERGE -bb 1000, the sub-sampled ORF2 

database, and the ORF2 genes from our consensuses. The consensus tree was edited in R v4.1.1 

using the treeio (L. Wang et al., 2020), ape (Paradis and Schliep 2019), ggplot2 (Wickham 

2016), and ggtree (Yu 2020; Yu et al., 2018, 2017) packages.

Results:

Sequencing:

We enriched and sequenced the PCV2 ORF2 gene from six domestic pig samples and 12 

infected wild boar blood samples from the Chernihiv, Chernivtsi, Luhansk, Poltava, Volyn, and 

Zaporizhia oblasts of Ukraine on a Minion sequencer. During quality control, we removed the 

Luhansk 1 sample because it had no reads that mapped to PCV2 genome. The remaining samples 

had read depths between 14941 to 635035 and mean Q-scores between 12.9 to 14.6 for the major 

strain after binning (Table 1-2).

We also enriched and sequenced whole genomes from 10 of our wild boar samples. Six 

samples (Chernihiv 1 to 3; Chernivtsi 1, and 2; and Poltava 1) had a read depth between 97 to 

3194 reads and a mean Q-score between 12.3 to 12.9 after binning (Table 1-3). Five of our six 

samples (Chernihiv 1 to 3 and Chernivtsi 1 and 2) had at least one read that was between 1745 to 

1787 bases long, which almost covers the entire PCV2 genome (Table 1-3). However, only the 

Chernihiv 1 sample had enough near full genome length reads to build a consensus genome 

(Table 1-3). The only disagreements in ORF2 gene from our whole genome samples and their 

ORF2 enriched replicate samples was an indel and an anonymous base (Table 1-4).
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Table 1-2: ORF2 PCR sequencing results. QC indicates after the quality control step. No.reads is 

the number of reads

Sample QC No.reads Yield (bases) Mean length (bases) Mean quality (Q-score)
Chernihiv 1 No 184466 145456780 788.5 13
Chernihiv 1 Yes 170304 134933726 792.3 13
Chernihiv 2 No 123054 97389870 791.4 12.9
Chernihiv 2 Yes 70235 55802830 794.5 13.2
Chernihiv 3 No 131087 121272848 925.4 12.9
Chernihiv 3 Yes 71070 56809157 799.3 13.2
Chernihiv 4 No 155582 172464376 1108.5 12.6
Chernihiv 4 Yes 47930 38305973 799.2 13.1
Chernivtsi 1 No 240443 181401635 754 13
Chernivtsi 1 Yes 144338 114925229 796.2 13.1
Chernivtsi 2 No 226523 179205173 791.1 13
Chernivtsi 2 Yes 146489 116358358 794.3 13.2
Luhansk 1 No 38948 88934212 2283.4 13.3
Luhansk 1 Yes NA NA NA NA
Luhansk 2 No 113234 141050360 1245.7 13
Luhansk 2 Yes 44527 36505679 819.9 13.2
Poltava 1 No 170553 136186715 798.5 13
Poltava 1 Yes 87848 69690980 793.3 13
Poltava 2 No 101124 108341638 1071.4 13
Poltava 2 Yes 76231 60518027 793.9 12.9
Volyn No 89270 113902664 1275.9 12.9
Volyn Yes 39156 31997967 817.2 13.1
Zaporizhzhia No 282747 253514624 896.6 13
Zaporizhzhia Yes 14941 12107298 810.3 13.1
Kharkiv 1 No 564644 441090027 781.2 14.2
Kharkiv 1 Yes 453425 359957451 793.9 14.5
Kharkiv 2 No 307150 239663591 780.3 14.3
Kharkiv 2 Yes 156283 124091978 794 14.6
Kharkiv 3 No 280582 221393187 789 14.3
Kharkiv 3 Yes 229888 182845561 795.4 14.6
Kharkiv 4 No 284647 219919196 772.6 14.3
Kharkiv 4 Yes 70490 55998055 794.4 14.6
Kharkiv 5 No 890841 700464609 786.3 14.2
Kharkiv 5 Yes 635035 503643792 793.1 14.5
Kharkiv 6 No 135297 87801240 649 14.2
Kharkiv 6 Yes 26903 21389410 795.1 14.6
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Table 1-3: Whole genome and ORF2 enriched replicate differences. No.reads is number of reads.

Sample QC No.reads
Yield 

(bases)

Mean 
length 
(bases)

Mean 
quality (Q- 

score)
Longest 

read
No.Reads >
1700 bases

Chernihiv 1 No 263934 159310070 603.6 12.7 NA NA
Chernihiv 1 Yes 3194 4023081 1259.6 12.5 1787 32
Chernihiv 2 No 295011 147685127 500.6 12.9 NA NA
Chernihiv 2 Yes 401 505994 1261.8 12.5 1756 1
Chernihiv 3 No 179477 104622440 582.9 12.7 NA NA
Chernihiv 3 Yes 546 686376 1257.1 12.6 1745 1
Chernivtsi 1 No 353680 149116019 421.6 12.3 NA NA
Chernivtsi 1 Yes 390 493934 1266.5 12.5 1746 1
Chernivtsi 2 No 296593 140612668 474.1 12.4 NA NA
Chernivtsi 2 Yes 97 123328 1271.4 12.8 1770 4
Luhansk 1 No NA NA NA NA NA NA
Luhansk 2 No NA NA NA NA NA NA
Poltava 1 No 322507 168769281 523.3 12.8 NA NA
Poltava 1 Yes 108 134893 1249 12.5 1250 0
Volyn No NA NA NA NA NA NA
Zaporizhzhia No NA NA NA NA NA NA

Table 1-4: Whole genome and ORF2 enriched replicate differences. No.indels is number of 

indels. No.mismatches is number of mismatches. No.anonymous bases is number of anonymous 

bases.

Co-infections:

We tested the accuracy of our co-infection pipeline mentioned in methods using 

simulated reads (Appendix: Chapter 1: Supplementary methods). We found that our co-infection 

pipeline could accurately detect co-infections with less conservative settings than we used, when 

each consensus was polished with at least 100 reads (Figure A-2 and Figure A-3). Most 
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Sample No.indels No.mismatches No.anonymous bases
Chernihiv 1 0 0 0
Chernihiv 2 0 0 0
Chernihiv 3 0 0 0
Chernivtsi 1 1 0 0
Chernivtsi 2 0 0 1
Poltava 1 0 0 1



consensuses had at least one indel, but very few consensuses had mismatches. Most of the 

mismatches were in consensuses with low read depths or consensus that missed a co-infection, 

which resulted in a hybrid consensus (Figure A-4 and Figure A-5).

We tested co-infections in our samples with our co-infection pipeline. Both of our wild 

boar samples from Chernivtsi had at 3% of their reads from a co-infection (Table 1-5). While 

half of our domestic pig samples had 5% to 28% of their reads from a co-infection (Table 1-5). 

All detected co-infections had at least a 1000 reads (Table 1-5) and were also detected by 

medaka_variant (Table A-1).

Table 1-5: Percent of minor variant reads. No.reads is the number of reads.

Maximum Likelihood Tree:

We used a maximum likelihood tree to determine the diversity of PCV2 genotypes in our 

samples and to detect any genotypes of PCV2 that are new to Ukraine (Figure 1-3). We found 

that our samples and Ukraine ORF2 sequences from GenBank grouped into the clades containing 

genotypes a, b, d, f, and g; which are all the genotypes in our tree (Figure 1-3). Our samples were 

grouped into the clades containing references from genotypes a (HM038034, Bootstrap (BB) = 

100), b (KY806003, BB == 90), d (KC515014, BB = 91), and f (LC004750, BB = 100, Figure 1

3). With, the clade containing genotype b (KP420197) having most of our wild boar and 

domestic pig samples (BB = 90, Figure 1-3).
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Sample % minor variant No.reads Source
Chernivtsi 1 3.47 5191 Boar
Chernivtsi 2 3.93 6000 Boar
Karhkiv 4 28.41 28356 Pig
Karhkiv 5 5.81 39560 Pig
Karhkiv 6 25.82 9398 Pig



The clade with the genotype d reference (KC515014), had one non-co-infected domestic 

pig sample (Kharkiv 2), a Ukraine ORF2 sequence from GenBank (KP420187), and the major or 

minor variant from all three co-infected domestic pig samples in our tree (Kharkiv 4, 5, and 6; 

BB = 91, Figure 1-3). All the co-infected samples also had their major (2) or minor (1) variant 

group into the clade with the genotype b reference (KP420197, BB = 90, Figure 1-3).

Only wild boar samples were grouped into clades holding the genotypes a, f, and g 

references (Figure 1-3). For genotype a (HM038034) we had two minor variants from a co

infection (Chernivitsi 2 and 4) and the Ukraine ORF2 sequences from GenBank (KP20202, 

KP20203, KP420186, KP420194, and KP420199, Figure 1-3). The clade with the genotype f 

(LC004750) reference had only our Poltava (2) sample (BB = 93, Figure 1-3).

In clade containing the genotype b reference (KY806003), our second sample from 

Luhansk and three of our samples from Chernihiv (2-4) had a branch length of zero (were 

identical). Other ORF2 sequences that were identical included Luhansk (KP420189) and 

Cherkasy (KP420191) (BB = 98) in the clade with the genotype b reference (KY806003) and 

Lviv (KP420203) and Dnipropetrovsk (KP420199) (BB = 100) in the clade with the genotype a 

reference (HM038034, Figure 1-3).

Discussion

Using genomics, we sampled the diversity of PCV2 circulating in Ukrainian domestic 

pigs and wild boars. Previous studies identified the most common genotype in Ukraine as 

genotype b, with genotypes a, d, and g also being present in Ukraine (Dudar et al., 2018; 

Kleymann et al., 2020). Among our wild boar samples, we found that genotype b was the most 

common genotype detected. Other genotypes detected in our wild boar samples were genotypes a 
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and f. In our domestic pig samples, we found only genotype b and d which were at near equal 

frequencies.

Figure 1-3: PCV2 ORF 2 maximum likelihood tree. Wild boar sequences from our study are

highlighted in red. Domestic pig sequences from our study are highlighted in blue.
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Genotypes:

We detected PCV2 genotype d in half of our domestic pig samples from 2019 and one 

pre-2013 Ukrainian wild boar sequence downloaded from GenBank. Before 2013, genotype d 

was rare and genotype b was common in domestic pigs and wild boars from many countries 

(Franzo and Segales 2018; Xiao et al., 2016; Song et al., 2020; Franzo et al., 2020). However, 

after 2015, genotype d became a common global genotype, while genotype b decreased in 

prevalence (Franzo and Segales 2018). So, it is likely that we observed a similar shift from 

genotype b to genotype d in our samples. However, our 2013 samples are from wild boars and 

our 2019 samples are from six domestic pigs. So, we would need more domestic pig samples, 

archived domestic pig samples from 2012, and wild boar samples from 2019 to confirm there 

was a shift from genotype b to d in Ukraine.

Currently, all Ukrainian wild boar sequences on GenBank and in our study are from 

samples collected before 2013. So, we cannot determine the current genotypes of PCV2 

circulating in the Ukrainian wild boar population. However, between 2010 and 2013, genotype d 

became a more common genotype globally (Franzo and Segales 2018). There was also an 

increase in genotype d in Italian and Korean wild boar populations after 2013 (Song et al., 2020; 

Franzo et al., 2020). This suggests that genotype d may be a common genotype in modern day 

Ukrainian wild boars. However, surveillance is needed to confirm if genotype d is a common 

genotype in the current day Ukraine wild boar population.

We found that genotype f, a genotype not previously detected in Ukraine, was in Ukraine 

during 2012. Genotype f was first detected in China in 2008, but archived samples show that 

genotype f could be found in China in 1996 (Zhao et al., 2010; Bao et al., 2018). Genotype f has 
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also been detected in India, Indonesia, Croatia, and the USA (Bhattacharjee et al., 2021; 

Nugroho et al., 2016; Y. Wang et al., 2020). However, none of these countries are neighbors to 

Ukraine. This suggests that either genotype f is undetected in many countries or is spreading 

through human activity. More surveillance is needed in countries around Ukraine to detect if 

genotype f may have been transmitted from neighboring countries or through trade from distant 

countries.

Before our study, we knew genotype d was present in wild boars and domestic pigs in 

Ukraine, while genotype g was present in wild boars (Dudar et al., 2018; Kleymann et al., 2020). 

However, we only detected genotypes d and g through the sequences we download from 

GenBank. This shows that genotypes d and g were in the wild boar populations in Ukraine 

before 2013, but that our sample size was too small to detect rare genotypes reliably. The lack of 

other studies to detect genotype f in Ukraine and the inability of our study to detect genotypes d 

and g in wild boar samples suggests that PCV2 diversity in Ukraine is under-sampled.

Porcine Circovirus Type 2 Transmission:

We detected identical PCV2 sequences in wild boars in Luhansk and Chernihiv, Lviv and 

Dnipropetrovsk, and Cherkasy and Luhansk. A previous study found identical PCV2 sequences 

in Zaporizhzhia and Chernigiv; and Cherasky and Kharkiv (Dudar et al., 2018). None of these 

oblasts are neighboring oblasts and Lviv and Dnipropetrovsk are on opposite sides of Ukraine, 

suggesting that PCV2 may be transmitted between oblasts in Ukraine. Alternatively, PCV2 

transmission to different oblasts may be from similar sources, like neighboring countries, outside 

of Ukraine. More genomic surveillance in Ukraine and in neighboring countries is needed to 

understand PCV2 circulation in Ukraine.
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PCV2 can be transmitted by mixing of farm populations, trade, and by wild boar 

movements (Franzo et al., 2020; Correa-Fiz et al., 2018). Our sample size prevents us from 

determining if the spread of PCV2 in Ukraine is through wild boar movements or trade. 

However, highly similar PCV2 sequences shared between domestic pigs and wild boars have 

been found in multiple countries, including Ukraine (Franzo et al., 2020; Cságola et al., 2006; 

Dudar et al., 2018). Showing that transmission between wild boars and domestic pigs is possible 

and that some PCV2 transmission between wild boars and domestic pigs may have happened in 

Ukraine. However, it is possible, but less likely, that both wild boars and domestic pigs may be 

infected with PCV2 from domestic pigs in neighboring countries.

Co-infections:

We detected co-infections between subtypes b and d in almost half of our domestic pig 

samples. Co-infections between genotypes b and d were a common co-infection seen in the US 

during 2015 (Xiao et al., 2016). However, other studies have also detected co-infections between 

genotypes a and d, a and b, and e and d (Xiao et al., 2016; Park and Chae 2021; Correa-Fiz et al., 

2018). Showing that our detected domestic pig co-infections are not unexpected and that we 

likely missed co-infections involving rare genotypes.

There are multiple PCV2 studies that did not use methods that could detect co-infections 

between PCV2 variants (Zheng et al., 2020; Raev, Yuzhakov, and Aliper 2021; Song et al., 

2020; Franzo et al., 2020). However, our only sequences with genotype a were from wild boar 

co-infections or were downloaded from GenBank. The detection of genotype a in our samples 

suggests that detecting co-infections increases the chances of detecting less common genotypes.
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This also shows the utility of using nanopore sequencing, since our methods used to detect co

infections required few additional resources, mainly bioinformatic analyses.

The lower read accuracy of nanopore sequencers, relative to short-read and Sanger 

sequencing technologies, may seem to limit our ability to detect co-infections. However, we 

detected the same co-infections when we used Medaka_variant, which is a diploid variant caller 

(Appendix Table 1). Also, we found our pipeline could detect co-infections and ignore noise 

when we tested it with simulated co-infections (Appendix methods and Figures A-4 to A-5). 

Finally, Leigh et al., (2020) showed blastn could assign raw reads from nanopore sequencers to 

the correct genotype with fewer than 1% of reads being miss-assigned. All our minor variants in 

our co-infections had over 2% of reads, which is above the expected 1% of miss-assigned reads 

found by Leigh et al., (2020). Between Leigh et al., (2020), Medaka_variant, and testing with 

simulated co-infections, we have strong support that the co-infections we detected are not due to 

the error rate in nanopore sequencing. However, this does not eliminate our detected co

infections being from sample contamination or crosstalk between barcodes. Though, crosstalk is 

not likely in wild boar co-infections, due to only detecting genotype a in co-infections.

Full Genomes:

Using nanopore sequencing allowed us to sequence almost the entire PCV2 genome for 

five of our samples. However, low amplification prevented us from building consensus genomes 

for all but one sample (Cherihiv 1). Our PCV2 whole genome was from genotype b, had 3 single 

nucleotide variations, and no amino acid changes to its closest match on GenBank (Accession 

JX406426.1). Once the amplification step is improved, nanopore sequencing could be a reliable 

method to sequence whole PCV2 genomes.
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One additional future improvement could be the use of rolling circle replication (RCR) as 

an enrichment method for PCV2. RCR has been used to enrich PCV2 samples in the past and 

would allow for reads with multiple copies of a single PCV2 genome (Navidad et al., 2008; 

Dezen et al., 2010). These reads can be split up and converted to a single, more accurate 

consensus (Gallardo et al., 2021). This approach may effectively reduce the high read error rate 

in nanopore sequencing.

Conclusions:

We have found that PCV2 genotype b was common in all our sequences from Ukraine 

and that genotype d was also common in our domestic pig samples. Also, that genotypes a, d, g, 

and f were circulating in the pre-2013 wild boar population. However, our low sample size likely 

limited our ability to detect rare genotypes in the domestic pig population. So, there may be more 

genotypes than b and d in the Ukrainian domestic pig population.

For circulation, we found that identical PCV2 variants have been transmitted multiple 

times to different oblasts. However, low sample sizes within oblasts prevented us from detecting 

transmission chains. So, we do not know if the transmission is between oblasts or from countries 

outside of Ukraine. Showing that more PCV2 surveillance is needed in Ukraine and the countries 

neighboring Ukraine to understand PCV2 transmission in Ukraine.

Our small sample size was the biggest limitation in our study, preventing us from 

detecting rare genotypes in the domestic pig populations. By detecting co-infections, we 

increased the number of PCV2 sequences in our study. This allowed us to detect genotype a in 

our wild boar samples. This evidence shows that detecting and sequencing co-infections can 

reduce, but not prevent, the effects of low sample sizes on estimating PCV2 diversity. We would 
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recommend that future PCV2 surveillance studies detect and sequence co-infections. One 

solution to detecting co-infections is nanopore sequencing, which gives full genome length reads 

and does not need the cloning step that Sanger sequencing requires to detect co-infections. The 

read error of nanopore sequencing can be improved with RCR, which has been used to enrich for 

PCV2 genomes in the past. For future studies looking at Ukraine or its neighboring countries, we 

would recommend larger sample sizes, detecting co-infections, and using nanopore sequencing 

instead of Sanger sequencing.
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Chapter 2: Accuracy and Completeness of Long Read Metagenomic Assemblies.2

2Article to be published by Buttler, J. and D. M. Drown

Abstract:

By looking at interactions between microbes, we can learn how microbes influence the 

surrounding environment, contribute to human health, and understand which pathogen 

interactions result in differences in disease severity. Metagenomics has been utilized as a tool to 

explore such interactions. Metagenomic assemblies built using long read nanopore data depend 

on the read level accuracy. The read level accuracy of nanopore data has made dramatic 

improvements. However, we do not know if the increased read level accuracy allows for faster 

assemblers to make as accurate metagenomic assemblies as slower assemblers. Here, we present 

the results of a benchmarking study comparing three commonly used long read assemblers, Flye, 

Raven, and Redbean. We used a prepared DNA standard of seven bacteria as our input 

community. We prepared a sequencing library on the VolTRAX V2 sequence using a MinION 

mk1b. We basecalled using the latest version of Guppy with the super-accuracy model. We 

found that increasing read depth benefited each of the assemblers, and nearly complete 

community member chromosomes were assembled with as little as 10x read depth. Polishing 

assemblies using Medaka had a predictable improvement. Among the bacterial community, some 

assemblers struggled with particular members, but we found Flye to be the most robust across 

taxa. We found Flye was the most effective assembler for recovering plasmids. Based on Flye's 

consistency for chromosomes and increased effectiveness at assembling plasmids, we would 

recommend using Flye in future metagenomic studies.

41



Introduction:

Current methods for sequencing microbes involve isolating and sequencing individual 

community members, sequencing 16S rRNA genes, or metagenomics (Garmendía et al., (2012); 

Petersen et al., 2019). Isolating individual microbes requires culturing, which is often difficult or 

practically impossible (Garmendía et al., 2012). Sequencing 16S rRNA genes cannot provide 

information on the entire genomes, such as genes that might increase virulence or provide 

antibiotic resistance (Petersen et al., 2019). Metagenomics is a method where an entire sample is 

sequenced and the individual community members are sorted out later with bioinformatic 

analyses (Bai et al., 2022). Metagenomic sequencing can detect most DNA community members, 

including unculturable microbes and novel community members (Garmendia et al., 2012). The 

individual community member sequences can be studied to identify pathogens in difficult to 

diagnose diseases, genes that may increase virulence, and look for correlations between co

infecting pathogens that increase disease severity (Garmendía et al., 2012; Kumar et al., 2018; 

Petersen et al., 2019; Qin et al., 2018). Currently, most metagenomic studies use Illumina based 

technology, which produces highly accurate, short reads (Petersen et al., 2019). Over the past 

several years, Oxford Nanopore has increased sequencing throughput and yield to be reasonable 

for metagenomic studies, but these reads are error prone, but are also orders of magnitude longer 

than short read platforms (Petersen et al., 2019).

The short reads (150-300 base pairs) from Illumina sequencing make genome assembly 

difficult for complex communities. Short read lengths do not facilitate merging the multiple 

contigs built for a genome into a single contig, resulting in highly fragmented assemblies 

(Goldstein et al., 2018). Also, short reads cannot span long repeat regions, causing repeat regions 

to shrink, providing less complete assemblies (Sevim et al., 2019). More complete genomes can 
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be made using long read sequencing technologies, such as Oxford Nanopore or PacBio 

(Goldstein et al., 2018). Oxford Nanopore sequencers platforms (e.g., MinION) have produced 

reads greater than 2 mb long in length and can easily produce libraries with mean read lengths of 

greater than 16 kb, which makes it possible to assemble long repeat regions (Amarasinghe et al., 

2020; Payne et al., 2019; Jain et al., 2018). However, the high error rates of nanopore sequencing 

prevent short read assemblers from producing quality assemblies with long read data (Jain et al., 

2018; Latorre-Perez et al., 2020).

Three commonly used long read specific assemblers include Flye, Raven, and Redbean 

(Yang et al., 2021; Latorre-Perez et al., 2020; Breckell and Silander 2021; Chen et al., 2020b). 

Flye is a long read metagenomic assembler that constructs a repeat graph to assemble and polish 

contigs. These contigs are then used to build an assembly graph with A-Bruijn (Kolmogorov et 

al., 2019; Kolmogorov et al., 2020). Previous studies found that while Flye can build more 

accurate metagenomic assemblies than Raven or Redbean, it also takes more time and more 

memory (Wick and Holt 2019; Latorre-Perez et al., 2020). Raven is a fast assembler that uses an 

Overlap-Layout-Consensus (OLC) approach to build an assembly graph from raw reads (Vaser 

and Sikic 2021). For some individual assemblies Raven can have comparable accuracy to Flye 

after the assemblies are polished, but has less accuracy for metagenomic assemblies (Wick and 

Holt 2019; Breckell and Silander 2021). Redbean is another fast assembler that follows the OLC 

concept by using a fuzzy de Bruijn graph to build assemblies from raw reads (Ruan and Li 2020; 

Rizzi et al., 2019). Previous studies have found that Redbean uses more memory and builds less 

accurate assemblies than Raven (Wick and Holt 2019; Latorre-Perez et al., 2020).

Benchmarking is used to compare bioinformatics tools and to determine which tool is 

best suited for a particular task (Yang et al., 2021; Aniba et al., 2010). Benchmarking studies for 
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metagenomic assemblers often include well characterized communities or mock communities, 

like one of the many ZymoBIOMICS Microbial Community Standards (Latorre-Perez et al., 

2020; Sereika et al., 2021; Goldstein et al., 2018; Kolmogorov et al., 2020). Mock communities 

are synthetic communities composed of multiple known microbes, with known genome 

sequences and abundances (Bokulich et al., 2016). This information allows for accurate 

assessment and comparison of assemblers for metagenomic data.

A past benchmarking study using a ZymoBIOMICS Microbial Community Standard 

found that Raven and Redbean could not build complete assemblies for the E. coli and 

Salmonella enterica community members (Latorre-Perez et al., 2020). Raven did well for the 

other community members in the Zymo mock community (Latorre-Perez et al., 2020). Raven 

also performs well for individual assemblies of E. coli (Breckell and Silander 2021; Chen et al., 

2020b). These differences in performance suggest that the high read error rate may cause Raven 

to confuse genome fragments from other community members with E. coli fragments (Latorre- 

Perez et al., 2020; Breckell and Silander 2021; Chen et al., 2020b). If so, a higher read accuracy, 

as produced by the current versions of Guppy, may allow Raven to assemble all community 

members from the mock community with similar accuracy to Flye. Another weakness of Raven 

and Redbean is that they often fail to build assemblies for plasmids (Wick and Holt 2019). These 

weaknesses may limit the performance of Raven and Redbean for complex metagenomic 

assemblies, where plasmids may be common and particular community members may be 

present.

Improvements in converting the electrical signal from nanopore sequencing to 

nucleotides (basecalling) have led to increased read level nanopore sequence accuracy. The 

release of the super-accuracy model to Guppy has pushed modal accuracy to 98%
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(https://nanoporetech.com/accuracy). As the individual reads improve in quality, faster 

assemblers, like Raven, may be able to build assemblies of problematic community members, 

like E. coli, with comparable accuracy to slower, but more accurate assemblers, like Flye.

Here, we compare the completeness and accuracy of metagenomic assemblies built with 

Flye, Raven, and Redbean. We used data basecalled with the super-accuracy model. From this 

comparison, we will contrast the areas of strength and weakness of long read metagenomic 

assemblers

Methods:

Sequencing:

We sequenced a mock community standard (ZymoBIOMICS HMW DNA Standard, 

catalog #D6322) using long read sequencing to compare metagenomic assembly methods. The 

HMW DNA standard is a synthetic microbial community comprising three gram-negative 

bacteria, four gram-positive bacteria, and one yeast (Table 2-1). Bacterial community members 

have a genome size between 2.73 mb to 6.792 mb, a GC content between 32.9% to 66.2% (Table 

2-1). Each bacteria community also contributed 14% of nucleotides in the mock community 

(Table 2-1). The template DNA in the community has a mean length of 24 kb. Sequences can be 

found at https://s3.amazonaws.com/zymo-files/BioPool/D6322.refseq.zip,

We used 1 ug of the HMW DNA standard as input for the VolTRAX V2 (Oxford 

Nanopore Technologies [ONT]) to prepare a sequencing library using the (VSK-VSK002 

workflow). The VolTRAX library is analogous to the Rapid Sequencing library and results in 

additional DNA template fragmentation as the library is prepared. We sequenced the prepared 

library using the MinION mk1b (ONT) on a r9.4.1 flow cell (FLO-MIN106) for 48 hours
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(VSK002 script). We basecalled the reads using Guppy version 5.0.7 with the super-accuracy 

model (-c dna_r9.4.1_450bps_sup.cfg). We set a minimum quality filter of ≥ 10 (-min_qscore 

10).

Table 2-1: Community members in the HMW DNA standard. No. genomes refers the number of 

genomes.

NRRL 
Accession 
No. Organism

Number
plasmids

GC
Content

(%)
Genome
size (mb)

Gram 
stain

%
nucleotides

No.
genomes

B-354 Bacillus subtilis 0 43.9 04.045 + 14 13.20
B-537 Enterococcus 

faecalis
0 37.5 02.845 + 14 18.80

B-1109 Escherichia coli 1 46.7 04.875 - 14 10.90
B-33116 Listeria 

monocytogenes
0 38.0 02.992 + 14 17.80

B-3509 Pseudomonas 
aeruginosa

0 66.2 06.792 - 14 07.80

B-4212 Salmonella 
enterica

0 52.2 04.760 - 14 11.20

B-41012 Staphylococcus 
aureus

3 32.9 02.730 + 14 19.60

Y-567 Saccharomyces 
cerevisiae

NA 38.3 12.100 NA 02 00.63

To generate a subsample of reads, we used trycycler (Wick et al., 2021). We used a 

genome size of 42 mb and the -min read depth parameter to generate sub-samples of 420 mb, 

840 mb, 1260 mb, 2100 mb, 4200 mb, and 8400 mb. These total yields should theoretically 

represent 10x, 20x, 30x, 50x, 100x, and 200x read depths. At each read depth, we produced 12 

subsamples for a total of 72 datasets. The mean number of bases, mean longest read length, and 

mean N50 for each read depth was found using NanoStat --fastq (Coster et al., 2018).

Assembly and Polishing:

For this comparison, we used three commonly used long read assemblers to construct 

metagenomic assemblies of our datasets, Flye, Raven, and Redbean. We used Flye version 
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v2.8.3 (Kolmogorov et al., 2020) with default parameters specifying nanopore reads (-nano-raw) 

and the following options in recover plasmids (-plasmids) and metagenomes (-meta). We used 

Raven v1.5.1 (Vaser and Sikic 2021) with default parameters. We used Redbean v2.5 (Ruan and 

Li 2020) with default parameters specifying nanopore reads (-x ont), and a genome size of 42 mb 

(-g 42m).

We polished all assemblies using one round of Racon v1.4.22 (Vaser et al., 2017) 

followed by one round of Medaka v1.4.3 (https://github.com/nanoporetech/medaka) , specifying 

the super-accuracy model (-m r941_min_sup_g507). For Racon we used the ONT suggested 

parameters: score for matching bases (-m 8), score for mismatching bases (-x -6), gap penalty (-g 

-8), window size (-w 500), and mean quality threshold for each window (-q -1).

Quality Assessment:

We measured assembly quality and completeness with the genome fraction output by 

MetaQuast v5.1.0 (Mikheenko et al., 2016). For MetaQuast we used the references in Table 2-1 

to measure the completeness of both the polished and unpolished metagenomic assemblies.

We measured assembly accuracy with the median Q-score output by Pomoxis 

(https://nanoporetech.github.io/pomoxis) assess_assembly. Pomoxis was used with the 

references in Table 2-1 to find the quality scores (Q-scores) of the assemblies. For each 

assembly, we calculated Q-scores for chromosomes and plasmids separately.

We completed all analysis, including assembly, polishing, and assembly quality 

assessment on a server with an Intel Core i9 9900K 3.6GHz Eight Core (16 thread) CPU, a 

Nvidia Quadro GV100 GPU, and 128 GB of ram. We measured the time required and the 

maximum memory used to build each assembly using GNU time with parameter -f %ee. The 
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time, assembly, polishing, MetaQuast, and Pomoxis steps were automated using custom bash 

scripts (https://github.com/jeremyButtler/assembler-scripts).

We used R v4.1.1 (R Core Team 2022) with ggplot2 (Wickham 2016) to build graphs for 

the metagenome fraction, genome fraction, median Q-scores, number of misassemblies, time, 

and maximum memory usage. The metagenome fraction was found by dividing the number of 

bases that were aligned to a community member in a replicate by the total bases in the 

community.

Results:

Subsampling Statistics:

We sequence the ZymoBIOMICS HMW DNA Standard on a nanopore sequencer and 

subsampled reads into subsamples of 420 mb (~10x read depth), 840 mb (~20x read depth), 1260 

mb (~30x read depth), 2100 mb (~50x read depth), 4200 mb (~100x read depth), and 8400 mb 

(~200x read depth). For each targeted read depth, our mean number of bases was very close to 

are target number of bases pairs (Table 2-2). The mean N50 between our read depths only 

differed by 18 base pairs (5012 to 15030 bp) (Table 2-2). The mean number of reads for each 

read depth ranged between with 45673 reads at 10x depth and 913452 at 200x read depth (Table 

2-2). Each time the read depth was doubled, we saw a two-fold increase in the mean number of 

reads (Table 2-2).
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Table 2-2: Subsample statistics for each read depth. Each read depth had 12 subsamples. No.

bases is number of bases

Read depth Mean No. reads Mean N50 Mean No. base pairs 
(mb)

10x 45673 15012.25 419.28
20x 91345 15020.75 838.87
30x 137018 15020.08 1258.72
50x 228363 15023.42 2099.35
100x 456726 15027.83 4198.77
200x 913452 15030.75 8398.78

Chromosome:

Genome Fraction:

Across all read depths, we found Flye produced assemblies with near 100% metagenome 

fractions (Figure 2-1 a). Even at our smallest read depth of 10x, Flye recovered nearly 100% of 

the metagenomic fraction (Figure 2-1 a). With increasing read depth, Raven and Redbean 

produced assemblies with improved metagenome fractions (Figure 2-1 a). Raven and Redbean 

reached a maximum metagenome fraction of 95% at 200x read depth (Figure 2-1 a). At the 

individual community member level, Raven and Redbean had the most difficulty in the assembly 

of Escherichia coli and Salmonella enterica, recovering less than 90% of the genome even at 

200x read depth (Figure 2-1 b).

Accuracy (Q-score):

Across all read depths, we found Flye produced the most accurate metagenomic 

assemblies, followed by Raven, and then Redbean (Figure 2-2 a). Increased read depth and 

polishing, predicably improved the median quality scores (Q-scores) of assemblies from all 

assemblers (Figure 2-2 a). All assemblers had a large improvement in Q-scores between 10x and

49



50x read depth (Figure 2-2 a). At 200x read depth Flye reached a maximum Q-score of 50, while

Raven and Redbean reached a maximum Q-score of 46 and 45 respectively (Figure 2-2 a).

Figure 2-1: Chromosome completeness. a — The metagenome fractions for all isolates in a 

replicate. Horizontal bars indicate the medians across replicates. Color and shape indicate 

different read depths, b — The genome fraction for each isolate at 200x read depth. Horizontal 

bars indicate the median value across replicate samples. Color and shape indicate different 

community members.

At the individual community member level, Raven and Redbean had the most difficulty 

in the assembly of E. coli and S. enterica (Figure 2-2 b). E. coli assemblies produced with Flye 

were more accurate (median Q-score 42.81) than those from Raven (26.73) and Redbean (under 

20). S. enterica assemblies produced by Flye were highly accurate (median Q-score 50) while 

Raven was slightly less accurate (42.54), but Redbean produced error prone assemblies (under
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20) (Figure 2-2 b). We also found that Raven and Redbean, but not Flye, had over 10 miss- 

assemblies for E. coli and S. enterica (Figure A-6).

Figure 2-2: Chromosome accuracy. a — Q-score for all chromosomes in each replicate. Median 

quality score (Q-score) for chromosomes in each assembly. Horizontal bars indicate the median 

across replicates. Green circles are polished assemblies and green horizontal bars indicate 

polished assemblies., b — median Q-score for each isolate at 200x read depth. Horizontal bars 

indicate the median across replicates. Color and shape indicate different community members.

Plasmids:

Genome Fraction:

Across all read depths, we found Flye recovered over 94% of the plasmid genomes

(Figure 2-3 a). At 50x read depth Flye recovered nearly 100% of the plasmid genomes (Figure 2

3 a). After 20x read depth, Raven and Redbean decreased the recovery of plasmid genomes 

(Figure 2-3 a). Raven and Redbean assembled a maximum of 95% of the plasmid genomes at 

20x read depth (Figure 2-3 a).
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At the individual plasmid level, Raven and Redbean both struggled with the plasmids 

smaller than 7 kb (Figure 2-3 b). Raven and Redbean assembled more of plasmids under 7 kb at 

30x and 50x read depth than at 200x read depth (Figures A-7 b, A-7 a). Raven could assemble 

the 2995 bp plasmid for all replicates at 50x read depth, but not at 200x read depth (Figure A-7 

b).

Figure 2-3: Plasmid completeness. a — Meta genome fraction for plasmids from each replicate. 

Horizontal bars indicate the median meta genome fraction across replicates., b — genome 

fraction for each plasmid at 200x read depth. Horizontal bars indicate the median genome 

fraction across replicates. E. coli is 110009 bases, S. aureus 1 is 6339 bases, S. aureus 2 is 2218 

bases, and S. aureus 3 is 2995 bases long.

Accuracy (Q-score):

Across all read depths, we found that Flye assembled the most accurate plasmids (Figure

2-4 a). With increased read depth, Flye produced more accurate plasmid assemblies (Figure 2-4 
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a). However, polishing did not improve the accuracy of Flye plasmid assemblies (Figure 2-4 a). 

At 100x read depth, Flye plasmid assemblies had a median Q-score of 50 (Figure 2-4 a).

Across all read depths, polishing Raven and Redbean plasmid assemblies resulted in 

more accurate plasmid genomes (Figure 2-4 a). Increased read depth did not improve the 

accuracy of Raven produced plasmid assemblies (Figure 2-4 a). Beyond 50x read depth, 

Redbean produced more accurate plasmid assemblies than Raven (Figure 2-4 a). However, 

Raven built assemblies with higher accuracy than Redbean when the read depth was under 100x 

(Figure 2-4 a).

At the individual plasmid level, only the E. coli 110009 bp plasmid could be assembled 

by all assemblers (Figure 2-4 b). All assemblers had a similar accuracy for the E. coli plasmid, 

(Q-scores around 26, Figure 2-4 b). All assemblers were able to assemble the E. coli plasmid 

without any missassemblies, but Flye and Redbean did have misassemblies in assemblies of 

plasmids under 7 kb (Figure A-8). However, Flye assembled almost all replicates for each 

plasmid and had near perfect accuracy for plasmids under 7 kb (Figure 2-4 b).

Assembly Time and Memory Usage

Predictably, we found that assemblers needed more time and memory to build an 

assembly with greater initial read input (Figure 2-5 a and Figure 2-5 b). When the read depth was 

under 50x, all assemblers used less than 30 minutes to complete an assembly (Figure 2-5 a). At 

200x read depth, Flye required over 400 minutes to complete an assembly. With that same input 

Raven required just 50 minutes and Redbean required only 25 minutes to complete an assembly 

(Figure 2-5 a).
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Figure 2-4: Plasmid accuracy. a — Median Q-score of all replicates at 10x, 20x, 30x, 50x, 100x, 

and 200x read depth. Horizontal bars indicate the median across replicates. Green circles and 

horizontal green bars indicated polished assemblies. The dashed line indicates the highest Q- 

score for Raven, b — median Q-score for each plasmid at 200x read depth. Q 50 is Q-score of 

infinity (100% accuracy). Horizontal bars indicate the median across replicates, E. coli is 110009 

bases, S. aureus 1 is 6339 bases, S. aureus 2 is 2218 bases, and S. aureus 3 is 2995 bases long.

Across all read depths, Raven and Redbean needed less memory than Flye to build an 

assembly (Figure 2-5 b). At read depths under 100x, Raven needed less memory than Redbean to 

build an assembly (Figure 2-5 b). At 50x read depth, Raven used 5.5 Gb of memory to build an 

assembly, while Redbean used 7.7 Gb of memory to build an assembly (Figure 2-5 b). Beyond 

50x read depth, Raven used more memory than Redbean to build an assembly (Figure 2-5 b). At 

200x read depth, Raven used 15.6 Gb of memory to build an assembly, while Redbean used 10.5 

Gb of memory to build an assembly (Figure 2-5 b). Flye used the most memory to build an 

assembly, requiring 10.6 Gb of memory at 10x read depth and 55.8 Gb of memory at 200x read 

depth (Figure 2-5 b).
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Figure 2-5: Time and memory usage of each assembler a — Amount of time to run each 

assembler in minutes., b — Amount of memory used by each assembler.

Discussion:

We compared the accuracy and completeness of assemblies built by three long read 

assemblers, Flye, Raven, and Redbean. For chromosomes, we found Flye was the only assembler 

that made near complete and accurate genomes for all community members. For plasmids, we 

found Flye was the only assembler that could assemble all plasmids reliably. However, Raven 

and Redbean were better than Flye in time and memory usage.

Effect of Read Depth:

For chromosomes, we found with increased read depth, all assemblers made more 

accurate and complete assemblies. We found that there was a sharp increase in accuracy between 

10x and 50x read depth. At 10x read depth, Flye was the only assembler that had near complete 

metagenome fractions. Showing that Flye could be used for low read depth datasets. However, 
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for more accurate assemblies, future metagenomic studies should continue to aim for a read 

depth of at least 30x.

For plasmids, we found most plasmids under 7 kb were assembled best by Flye, with the 

most plasmids recovered at 200x read depth. However, Raven and Redbean had decreased small 

plasmid recovery at deeper read depths and performed best at read depths between 20x or 50x. 

The decrease in assembled plasmids under 7 kb at deeper read depths suggests that Raven and 

Redbean are discarding smaller reads and contigs at deeper read depths. This results in plasmids 

under 7 kb being missed at deeper read depths but being kept at more shallow read depths. These 

observations are consistent with Wick and Holt (2019) who also found that both Raven and 

Redbean struggled to complete assemblies of smaller plasmids. These results highlight the 

weakness in Raven and Redbean for recovering plasmids.

We found that the accuracy of the larger E. coli plasmid (Q-score under 30) was much 

lower than the chromosome assemblies (40 or 50). This suggests that the plasmids have more 

error prone regions, assemblers are more likely to make misassemblies for plasmids, or that the 

plasmid references have more errors than the chromosome references. For reference errors, Flye 

could often assemble plasmids under 3 kb with no indels or mismatches and only a few (2 to 3) 

misassemblies. So, errors in the references are a less likely, but still a potential explanation for 

why Flye, Raven, and Redbean had poor performance for the E. coli plasmid.

For misassembly errors, we found all assemblers had no misassemblies in E. coli plasmid 

assemblies at 200x read depth, showing that the problem is not from misassemblies in the E. coli 

plasmid. Other sources of errors in the E. coli plasmid could be from more error prone regions in 

the E. coli plasmid or errors inserted by the assemblers in the assembly of the E. coli plasmid.
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During the process of generating these results a new version of Flye was released (v2.9), which 

included improvements for recovering plasmids and accounts for the improved accuracy from 

the super-accuracy model. However, more testing with a broader range of plasmid sizes is 

needed to determine if the errors are from error prone regions or from the assembler.

Metagenomics and Viruses:

Though our study looked at a mock microbial community mostly made of bacterial 

genomes, our results give insights in how reliable each assembler may be for viral metagenomic 

assemblies. The E. coli plasmid in our study is 110 kb long, which is close to or under the size of 

a large virus, such as the 170 to 190 kb long African swine fever virus genome (Gaudreault et al., 

2020). While the smaller plasmids in our study are near the size of small viruses, such as porcine 

circovirus type 2, which is 1.76 kb long (Breitbart et al., 2017).

For the larger plasmids and likely larger viruses, we found that Raven or Redbean would 

likely work as well as Flye. However, only Flye could make reliable assemblies for the smaller 

plasmids and so, is the only reliable assembler for smaller viruses, such as porcine circovirus 

type 2. Even then Flye will often have a few misassemblies, so it might be best to use an 

assembler, like viralFlye that is designed for viruses (Antipov et al., 2022). However, viralFlye is 

specialized for virus detection and thus has limitations on the maximum genome size (Antipov et 

al., 2022). This may limit viralFlye's use for bacterial community members. Making Flye or 

assemblies made with both viralFlye and Flye the best option for sequencing mixed communities 

of viruses and bacteria.
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Effect of Polishing:

We found that polishing improved the accuracy of all chromosome assemblies. However, 

for Flye and Redbean, polishing continued to improve the accuracy at 200x read depth, 

suggesting that even more data will improve the accuracy of polished Flye assemblies. To 

achieve highly accurate assemblies, we would recommend polishing and as much read depth as 

possible.

For Flye, polishing seemed to have little effect on the accuracy of plasmid assemblies. 

Instead, most plasmids smaller than 3 kb had no indels or mismatches at 200x read depth. 

Showing that polishing did not decrease the accuracy of the perfect assemblies. Likely, the high 

accuracy was due to the genome sizes of the plasmids being smaller than the error rate of 

nanopore consensuses assemblies (one error in 10000 bases for chromosomes). The idea of size 

is somewhat supported by the tenfold larger E. coli plasmid assemblies built by Flye having a 

much higher error rates (Median Q-score ~ 28) than the plasmids under 3 kb. Since polishing 

provides large improvements for chromosomes, while having no decrease in accuracy for 

plasmids, we would recommend polishing all metagenomic assemblies.

Problem Isolates:

We found that Raven and Redbean struggled to build assemblies of E. coli and

Salmonella enterica Latorre-Perez et al., (2020), also found that Raven and Redbean struggled 

with E. coli and S. enterica strains for the log and even mock communities from 

ZymoBIOMICS, both of which used the same E. coli and S. enterica strains as the HMW DNA 

Standard mock community. However, in a non-metagenomic study, Chen et al., (2020a) found 

that Raven could assemble complete genomes for a different strain of E. coli and a possibly a 
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different serovar of Salmonella enterica (S. Typhimurium). This suggests that either the strain of 

E. coli used in the mock community is a problematic strain or that assembling genomes of E. coli 

combined with S. enterica is difficult. Breckell and Silander (2021) found that strain specific 

characteristics of different E. coli strains made some E. coli strains harder for assemblers to 

assemble, so it is possible that the strain of E. coli in the mock community could be a more 

difficult strain to assemble. However, Breckell and Silander (2021) found that problematic 

strains of E. coli were problematic for all assemblers. Flye had very few misassemblies for E. 

coli at 200x read depth and had more accurate assemblies of E. coli than Raven or Redbean. This 

evidence is not consistent with a problematic strain of E. coli. However, we cannot fully 

eliminate the idea that the strain of E. coli in the mock community may be more difficult strain to 

assemble.

Other Studies:

To the best of our knowledge, our study is the first study to compare metagenomic 

assemblies made by Flye, Raven, and Redbean using super-accurate basecalled reads. We found 

Flye still made more accurate and complete genomes than Raven or Redbean when more 

accurate reads are used. This agrees with what Latorre-Perez et al., (2020) found when 

comparing Flye, Raven, and Redbean assemblies made from the less accurate reads. Like Sereika 

et al., (2021) we found accurate genomes could be built from read depths as low as 30x using 

Flye (Q-score 45 at 30x). This is an improvement from the Q-score of 43.6 at 80x read depth 

seen by Broddrick et al., (2020). We also know from Sereika et al., (2021) that even higher 

accuracies can be achieved if a R10.4 flow cell is used instead of a R9.4 flow cell.
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Like Breckell and Silander (2021) and Latorre-Perez et al., (2020), we found Flye and 

Raven to be better than Redbean in assembling complete genomes. However, unlike Breckell 

and Silander (2021), but like Latorre-Perez et al., (2020), we found Flye assembled more 

accurate assemblies than Raven. The difference may be that Breckell and Silander (2021) looked 

at assembling single isolates instead of metagenomes, like us and Latorre-Perez et al., (2020). 

This suggests that Raven may be better suited for assembling single isolates than metagenomics.

Like Wick and Holt (2019), we found Flye needed more time and memory than Raven 

and Redbean to complete an assembly. The large time and memory demands of Flye may limit 

Flye to lab use or at least limit Flye to high end laptops. However, Flye was the only assembler 

able to assemble the entire mock community at Q-scores over 40. Also, the use of the super

accuracy super-accuracy basecalling model will likely require a higher end laptop with a good 

GPU. This makes the high time and memory usage of Flye less of an issue.

Summary:

We found Flye was more reliable than Raven or Redbean for building accurate and 

complete assemblies of both chromosomes and plasmids from metagenomic communities. We 

found that Raven and Redbean struggle to recover small plasmids. This suggests that Flye would 

be a better choice for assembling viral community members. For our study's community, Raven 

and Redbean only performed better than Flye in the amount of computational resources needed 

to build an assembly. However, for a metagenomic study using the super-accurate basecalling 

model, the extra time and memory usage needed to run Flye would likely be minimal. On the 

other hand, the cost in accuracy from problematic community members or missing small plasmid 
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and virus assemblies from Raven and Redbean could lead to misinterpretations. Thus, for future 

metagenomic studies that use the super-accurate basecalling model, we recommend using Flye.
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General Conclusions:

Genomic epidemiology offers a way to detect pathogens of concern before epidemics 

begin and to track pathogens during epidemics (Gardy 2018). By tracking pathogens and 

identifying transmission routes, countries can prepare for future epidemics by reducing points of 

pathogen transmission or by making vaccines (Giovanetti et al., 2021; Iay and McCauley 2018; 

Gardy 2018). Iowever, emerging zoonotic pathogens that are transmitted from animals to 

humans (zoonotic spillover), such as Ebola, Zika, and SARS-CoV-2, have origins from regions 

of high biodiversity, like parts of Africa, Latin America, and Asia (Gardy 2018; Jones et al., 

2008). Some of the countries in these regions do not have the resources to invest in large-scale 

use of costly sequencing technology (Gardy 2018; Jones et al., 2008). As a result, there is less 

surveillance in countries with higher risks of zoonotic spillover, than in countries, like the United 

States, that have a relatively lower zoonotic spill over risk, but more resources for surveillance 

(Jones et al., 2008).

This lack of surveillance may cause emerging zoonotic pathogens to not be detected until 

they become epidemics, like with Ebola and Zika, resulting in an increased cost of stopping viral 

transmission (Gardy 2018; Dobson et al., 2020). An example is the SARS-CoV-2 pandemic, 

which has cost the world over five trillion dollars (Dobson et al., 2020). This multi-trillion-dollar 

cost and the cost of other epidemics, such as Ebola, may have been prevented by a 26-billion- 

dollar yearly investments in surveillance and other preventative measures (Dobson et al., 2020).

Low investment, portable sequencers, like nanopore sequencing, offer a solution for low- 

resource countries to do their own surveillance (Sereika et al., 2021; Gardy 2018). The 

portability allows nanopore sequencers to be used on site, allowing for rapid testing and 
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sequencing in regions with minimal laboratory resources (Gardy 2018). The low investment may 

allow low-resource countries and labs to afford nanopore sequencers, which may increase 

surveillance (Gardy 2018). Increasing surveillance in low-resource countries may increase the 

genomic surveillance of locations that are high risk for zoonotic spillovers. This may allow for 

genomic detection of emerging pathogens before they become an epidemic or pandemic. Early 

detection may allow countries with more resources to respond to pathogens in the country of 

origin, before they cause an epidemic or pandemic and are transmitted to other countries 

(Dobson et al., 2020; Gardy 2018). This will reduce the cost of emerging pathogens to the 

original country, the responding country, and the global society.

In chapter 1, I showed that nanopore sequencing can be used to understand the diversity 

and transmission of porcine circovirus type 2 (PCV2) in Ukraine. The discovery of a PCV2 

genotype (f) not previously found in Ukraine shows that PCV2 diversity in Ukraine was and still 

is likely underestimated. I also found that nanopore sequencers could detect potential co

infections involving multiple PCV2 genotypes. Finally, I found identical sequences in non

neighboring oblasts. This suggests that there may be PCV2 transmission between oblasts or that 

PCV2 may be transmitted into multiple oblasts from the same out of country source. However, 

none of our identical sequences were obvious transmission chains, suggesting that PCV2 

transmission is poorly understood in Ukraine and in the countries neighboring Ukraine. The 

underestimation in diversity and PCV2 transmission shows that more PCV2 surveillance is 

needed in Ukraine and neighboring countries.

Rare genotypes, like PCV2 genotype f, can easily be missed in surveillance studies. 

However, when rare genotypes are missed, we miss a potential source of diversity that can give 

rise to new variants. These rare variants can recombine in co-infections with more common 
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genotypes or other rare variants to produce recombinant variants more fit than the parent variants 

(Franzo and Segales 2020; Amoutzias et al., 2022). In the SARS-CoV-2 pandemic, the delta- 

omicron variant is an example of a recombinant variant that is a more fit variant than its parent 

variants (Amoutzias et al., 2022; Colson et al., 2022). Also, it is possible that rare variants may 

become common variants under the right conditions. An example of this is PCV2 genotype d, 

which became a common genotype after global PCV2 vaccination (Franzo and Segales 2018; 

Franzo and Segales 2020). Future PCV2 surveillance studies should use larger samples sizes to 

detect rare and recombinant variants.

In chapter 1, I also showed that nanopore sequencing can detect co-infections between 

PCV2 genotypes and possibly even within genotypes. These methods can be extended beyond 

PCV2 to other viruses, so long as there is at least a two to five percent difference between 

variants. My results show that nanopore sequencers are reliable in detecting co-infections 

between viral variants.

My pipeline is limited by the number of references input and the ability of minimap2 to 

accurately map reads to a set of references. Leigh et al., 2020 has shown that 5 kb reads could be 

correctly mapped to a set of references that were 98% similar. However, when the references 

were 99% similar, blastn could not reliably map 3 kb reads to the correct reference. This 

evidence shows that the read mapping step is likely a limitation in my pipeline. Especially since 

my PCV2 reference database could be easily expanded with many more sequences from 

GenBank. This limitation in read accuracy has been improved since my first thesis chapter.

My first thesis chapter did not take advantage of the recent advances in nanopore 

sequencing that have improved read accuracy (https://nanoporetech.com/accuracy). Also, my 
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second chapter did not take advantage of new updates to chemistry that have further increased 

read accuracy (https://nanoporetech.com/accuracy). It is likely that nanopore sequencers, with 

the recent updates, could detect more similar co-infections than I detected in my study.

Metagenomics offers a surveillance method that enables the detection of novel pathogens 

or pathogens that are often ignored in surveillance studies (Bai et al., 2022; Chiu and Miller 

2019). Long read metagenomics build more complete genomes than Illumina sequencing, while 

having a lower cost than other sequencing methods, such as Illumina sequencing and PacBio 

sequencing (Sereika et al., 2021). However, the high error rate of nanopore sequencers is a 

limitation (Petersen et al., 2019).

In chapter 2, I looked at the current completeness and accuracy of long read metagenomic 

assemblies for a synthetic bacterial community sequenced using nanopore sequencing. I found 

that chromosome metagenomic assemblies from Flye were complete and had Q-scores between 

40 (99.99% accurate) and 50 (99.999% accurate). I also found that Flye was the only assembler 

that could assemble small plasmids reliably. Plasmids are about the size of viruses, thus Flye is 

the only reliable assembler for viruses. This evidence shows that Flye is the best assembler for 

bacterial communities and the only reliable assembler for viral communities.

The completeness of long read metagenomic assemblies combined with the low cost 

suggests that long read metagenomics is a good method for detecting correlations between mixed 

infections or co-infections. Allowing nanopore sequencers to be used in finding correlations 

between porcine circovirus associated diseases (PCVAD) and other pathogens. One potential 

virus that has co-infected with PCV2 in the past is African swine fever virus (ASFV) (Dundon et 

al., 2022).
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ASFV, like Ebola, causes hemorrhagic fever in domestic pigs and has a high lethality 

(Cisek et al., 2016; Goeijenbier et al., 2014). Both ASFV and PCV2 infect macrophage cells 

(Franzoni et al., 2019). However, PCV2 cannot replicate in the monocyte-derived dendritic cells 

(moDC) cells ASFV infects, so direct competition between PCV2 and ASFV is unlikely 

(Franzoni et al., 2019). Though, PCV2 infections do prevent moDC cell maturation and cause 

some immunosuppression, suggesting that there is some indirect interaction between PCV2 and 

ASFV. (Franzoni et al., 2019). Also, PCV2 infections have been shown to reduce the vaccine 

efficacy for the bone marrow derived-blood dendritic cells infecting classical swine fever virus 

(Franzoni et al., 2019; Ouyang et al., 2019). Thus, it is possible PCV2 infections may reduce the 

efficacy of future ASFV vaccines.

One additional area long read metagenomics may be useful for is detecting novel, not yet 

sequenced pathogens. The genomes of novel pathogens are unknown, thus sequencing requires 

metagenomics, culturing, or PCR targeting conserved regions, such as the bacterial 16S rRNA in 

pathogens (Bharti and Grimm 2021; Garmendía et al., 2012; Chiu and Miller 2019). However, 

not all microbes can be cultured and PCR targeting of conserved regions does not give full 

genomes (Garmendía et al., 2012; Bharti and Grimm 2021). Metagenomics gives full genomes 

and allows the scientist to detect pathogens that cannot be cultured (Bai et al., 2022). One 

example of using metagenomics to discover disease causing pathogens is SARS-CoV-2, which 

was identified as a corona virus with PCR and sequenced using metagenomics (Zhou et al., 

2020). This shows that metagenomics is a powerful for viral discovery and surveillance. My 

thesis shows that using nanopore sequencers can improve surveillance for specific pathogens and 

through metagenomics pathogens that would be hard to capture.
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Nanopore sequencers offer a portable, low investment tool for surveillance and detecting 

pathogen combinations that increase disease severity, allowing for countries to do both their own 

surveillance with genotyping and with long read metagenomics. This warning may allow us to 

detect zoonotic spillovers early, which may allow us to prevent or reduce the severity of future 

epidemics. Also, as surveillance increases, we may get a better understanding of how pathogens 

are transmitting through human and animal populations. This may allow us to develop and apply 

one health preventive measures that may reduce zoonotic spillovers in high-risk regions. Long 

read metagenomics also provides a way to detect correlations between mixed infections or co

infections that increase disease severity of pathogens. In this thesis, I have shown that long read 

metagenomic assemblies built using Flye could detect viral and bacterial pathogens. This can 

then be extended by others to find correlations between mixed infecting or co-infecting 

pathogens in samples. With the methods that I have described, a co-infection that would be 

interesting and important for future exploration would be ASFV and PCV2.
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Appendix

Chapter 1: Supplementary methods:

Read simulation:

We tested the accuracy of my co-infection pipeline mentioned in my first chapter using 

simulated reads, made from pairs of references in our database. Potential reference pairs were 

found by blasting our original database against itself with blastn (NCBI Resource Coordinators 

2016) (See Figure A-1 for a flowchart). Reference pairs (hits with a query and subject) that had a 

percent identity score under 98% or greater than 98.5% were removed. For each query, I only 

kept the hit closest to 98 percent identity (n = 237).

I simulated three sets of reads for each reference pair using badread v0.2 (Wick 2019) 

with parameters -identity “90,97.5,5” and -quantity 20000x. The first set of simulated reads had 

50% of reads coming from the minor variant (query). The second set of simulated reads had 5% 

of reads coming from the minor variant. Finally, the third simulated set of reads had 1% of reads 

coming from the minor variant.

I detected Co-infections using the steps mentioned in chapter 1's methods, except we 

used mapping qualities of 20 and 30, required at least 1% difference between consensuses, did 

not check for differences in mismatches, and required each bin to have at least 0.4% of all 

mapped reads. For each consensus, I found the number of mismatches and indels by blasting the 

consensus genome against the reference pair used to simulate its reads. I made graphs showing 

the accuracy of the built consensus and ability of my pipeline to detect co-infections with 

ggplot2 (Wickham 2016)
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Figure 0-1: Co-infection pipeline testing methods.
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Chapter 1: Supplementary figures and tables:

Table 0-1: Co-infections detected by Medaka_variant. Variant calling with medaka_variant was 

done on reads that mapped to a columns reference genome. Columns show the reference 

genotype used with Medaka_variant. Rows show the genotypes detected. Co-infections are 

shwon by genotype-1/genotype-2. Genotypes d1 and d2 distinguish between the two-gentoype 

d's in Franzo and Segales (2018). Genotype d2 may actually be genotype e. Genotypes were 

found by building a maximum likelihood tree using RAxML with 1000 bootstraps and references 

from Franzo and Segales (2018). Samples not shown had only one genotype detected.

Sample
genotype

a
genotype 

b
genotype

c
genotype 

dl
genotype 

d2
genotype 

f
genotype 

g
genotype 

h
Kharkiv 4 d1 b/d1 dl dl b/dl dl dl dl
Kharkiv 5 b/d1 b b/d1 d1 b/dl dl dl dl
Kharkiv 6 d1 b d1 b/dl b/dl dl b/dl dl
Chernivtsi
1
Chernivtsi
2

a/b b a/b a/b b b a/b a/b

a/b b a/b a/b b b a/b a/b
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Figure 0-2: Percent of correctly detected co-infections. One consensus indicates a missed co

infection. More than two consensuses indicate extra co-infections (noise). Each major-minor 

strain ratio has sample size of 237 reference pairs.
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Figure 0-3: Extra filters removes co-infection noise. Extra filters: consensus genomes have at 

least 100 reads and 0.3% mismatches. One consensus indicates a missed co-infection. Each 

major-minor strain ratio has sample size of 237 reference pairs.
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Figure 0-4: Number of mismatches in co-infection consensuses. Black bars indicate the number 

of minor strains with mismatches for the 95-5 and 99-1 major-minor rations. Consensus with 0 

mismatches were removed. Sample size was 237 reference pairs (roughly 474 consensus) for 

each major-minor strain before filtering.
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Figure 0-5: Number of indels in co-infection consensuses. Black bars indicate the number of 

minor strains with mismatches for the 95-5 Consensus with 0 indels were removed. Sample size 

was 237 reference pairs (roughly 474 consensus) for each major-minor strain before filtering.
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Table 0-2: Sequences after recombinant removal

LC008l37 KT868494 KXl69308 KP08l543 KP245920 HM003569 JF6909l6
LC008l35 KC26l60l MGl82436 KJl39962 KC5l499l HM003570 JF6909l8
LC004750 HQ59l377 KU697267 KP08l542 KC5l50l4 GU370064 JF6909l9
KY806003 JN006457 KU697268 KP08l556 KMl90990 GU083582 FJ905459
KX8282l6 FJ8044l7 KU697227 KY947569 KJ679446 KP23ll08 FJ905463
KP768478 AB5l2l30 KU3l7492 KMll65l3 KP23lll8 KY806028 FJ905468
KP420l97 AB5l2l39 KU697l98 KM360053 JX945577 MF3l4200 AB36l574
KC5l50l4 LC3l0740 KU69720l KP23ll28 JX945576 KXl6l67l HM038027
HQ202949 MF737383 MH34l484 KY940520 KP23lll6 KT867949 MH465433
HM038034 KY947570 KU3l7473 KMl9l084 JX274295 KJ679445 KXl6l686
EU450638 MG8l3259 MFl69728 KMl9ll08 KM042406 HQ23l328 KT867856
MN482046 KY947565 KU69703l KP08l54l KF850465 JF3l7565 KT867870
MN482054 KX8l435l KU697049 KMl9l057 JN382l59 JF3l7570 KT867898
MNl96673 MG80748l KU69707l KMl9l07l JN382l64 JF3l7573 KT867953
MK552324 MG8l3260 MT376375 KP08l538 JN382l75 HQ59l379 KT867958
MN258752 KY656l02 MF589532 KMl9l020 KP420l9l GQ995584 KT867979
MNl705l7 KX5l0057 KY806064 MN935l79 KP420l93 GU325759 KT868003
MN482037 KX5l0064 KX928994 MN935l83 JN382l87 GU325766 KT8680l8
MTl045l3 KY656098 LC3l0732 MH465425 JN382l89 KP23ll03 KT868056
MK305880 KX098776 KY6560l9 KY440l66 KP420l92 KP23lll0 KT868067
MK305883 KY655972 KY656009 KY388468 LC383443 HM038032 KT868095
MN7352ll KX098762 KY656045 KUl93766 KY806032 KP23ll02 KT868l29
MK006039 KX098742 KP08l55l KT867860 KY806033 KP23ll29 KT868l42
MH920582 MK604508 KP08l552 KT867867 KR5597l0 GQ404807 KT868l78
MK504382 MK347352 KR058355 KT867888 KR5597l3 KF742546 KT868l87
MK504383 MH465430 KP08l550 KT8679l4 KR5597l4 HM038025 KT868200
MK604480 MH46543l KU3ll027 KT86793l KR559722 MH465402 KT868222
MK426838 MH35l27l KP08l549 KT867943 KC5l4972 MH465404 KT868234
MK347380 MG732823 KU697l02 KT867952 KC5l4979 MH465420 KT868258
MH509735 MG893892 KP08l546 KJ5ll872 JQl8l595 KY8060l2 KT868270
MH509736 MG8076l0 KP08l547 KF524259 JQ002672 KY8060l6 KT86827l
MTl045l4 MH055402 KY655985 KC75l546 KP23ll45 EU52l707 KT868272
MT423827 MF63l809 KP08l548 KF035059 KX904946 HQ83l526 KT868284
MK006037 KY8l032l LC383446 KMl9l009 JF683406 JF683403 KT868296
MT376339 LC3l0734 MH4654l0 KMl9l004 HQ378l62 GQ404799 KT8683l6
MKl4046l KX855983 MH465438 KP768483 JQ8669l9 EU296794 KT868325
MH509732 KX98l602 MF3l4288 KJ680360 KJ094600 AB36l585 KT86844l
MH509733 MF737379 KT8l9l59 KP23ll64 KJ094603 FJ233908 KT868480
MG732802 KXl69322 KT8l9l60 KM924366 KJ094606 KM624030 KT8685l9
MF589528 KXl69329 KT8l9l6l KP420200 KC6205ll KT8683l3 KC620544
KT868448 KX098689 KT8l9l63 MF3l4229 JF3l7584 KT86832l KC620552
KT868482 KY940535 KX298474 KT86795l JN006464 KT868365 KT868055
KT86849l KXl69298 KT8684l9 KT867972 GQ358997 KT868432 KT868058
KT868250 MK005836 EU450630 KT867997 KT868038 KT868454 KT868374
KT868254 MK005837 EF990646 KT868390 KT868079 KT868500 KC62054l
KT868357 LC278328 EF452364 KT86840l KT868l28 KT868509 FJ905464
KT868360 LC278333 EF5245l8 KT868440 KT868l58 JF6909ll FJ905466
KT868437 LC278346 EF524523 KT2l6672 KT868289 JF6909l2 FJ644556
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Table 0-3 Continued: Sequences after recombinant removal

FJ644559
FJ644562 
EU755372 
EU755373 
EU755376 
EU755377 
EU755381 
KC620532 
KC620537 
KC620536 
JF927976 
JF927979 
JF927978 
JF683387 
JF927977 
JN133304 
FJ644919 
MF139077 
JX512856 
JX512855 
MT769305 
MK005838 
MK005843 
MK005848 
MK005850 
MK005854 
KX641126 
KX641138 
LC278327 
LC278348 
MF589543 
MF616428 
MF142266 
KR868575 
HQ202944 
HQ202947 
HQ202948 
HQ202949 
HQ202950 
HQ202951 
HQ202957

HQ202963
HQ202964
HQ202966
GU244506
HQ395026
FN398026
EU747085
AB462385
AB462391
EU257515
EU057186
EU057188
AB426905
EU450585
EU450593
EU450595
EU450597
EU450601
EU450613
EU450623
EU450627
EF565349
EF565351
EF565367
EU136711
EF619037
EF592575
EF560608
EF452360
EF524524
EF524528
EF524538
EF190926
EF190927
EF064149
EF067852
DQ856564
DQ856569
DQ629114
DQ629123
DQ629127

DQ629129
DQ648031
DQ195679
DQ104420
AY864814
AY484411
AY682993
AY556477
AY217743
AF465211
AF201311
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Chapter 2 Supplementary figures:

Figure 0-6: Chromosome mis-assemblies at 200x read depth. Horizontal bars indicate the median 

value across replicate samples.
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Figure 0-7: 30x and 50x plasmid completeness. Horizontal bars indicate the median across 

replicates. E. coli is 110009 bases, S. aureus 1 is 6339 bases, S. aureus 2 is 2218 bases, and S.

aureus 3 is 2995 bases long. a — 30x read depth., b — 50x read depth.
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Figure 0-8: Plasmid mis-assemblies at 200x read depth. Horizontal bars indicate the median 

value across replicate samples.
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