24 research outputs found

    Characterizing and exploiting the endocytic pathway for macromulecular delivery

    Get PDF
    Macromolecular drugs with cytosolic or nuclear targets often exhibit low therapeutic activity due, at least in part, to their inability to escape endosomal compartments following cellular internalization. There exist a range of strategies to address this inefficient delivery by attempting to bolster the endosomal escape of the therapeutic cargo. Many of these delivery strategies apply to a broad range of molecular species, including proteins and nucleic acids. Two strategies of particular interest involve the use of extracellular vesicles (EVs) or endosomolytic small molecule compounds (SMCs). EVs are nanoscale, membrane-bound particles produced by all cell types and present in all bodily fluids. As a biological nanoparticulate species, EVs are inherently capable of delivering the material they contain to cells. Further, EVs can be modified through recombinant protein-based engineering strategies which can bestow a range of functional utilities such as fusogenicity, preferential cargo loading, and molecular targeting. However, the use of EVs as a scalable therapeutic modality is hampered by an inability to reliably mass-produce a homogenous population of these nanoparticles in vitro. SMCs, on the other hand, are easily synthesized at scale and can function in a stochastic manner dependent on an appropriate co-dosing strategy with their complementary therapeutic cargo. However, the mechanisms underlying SMC-mediated macromolecular delivery can be difficult to elucidate due to a lack of high-resolution characterization techniques. In this thesis, two issues - one underpinning each strategy - are investigated. First, the effects of culture media composition on the production of proteinloaded EVs in vitro are explored, with the ultimate aim of increasing EV output while characterizing the cellular biology driving the EV production. Certain serum components can differentially affect EV biogenesis by influencing ceramide-dependent EV biogenesis. In the second project, a functional screen of a novel family of SMCs is conducted to identify several chemical analogs in this family that demonstrate endosomolytic activity. Thereafter, superresolution and real-time microscopic assays are employed to determine the mechanism and consequence of the novel compounds during their co-treatment with a splice-switching oligonucleotide (SSO). SSOs are clinically relevant small-RNA therapeutics that alter the production of splice variants for a given genetic transcript. The novel SMCs bolster SSO activity by disrupting the structure of endosomes in a manner dependent on the acidification of the endosomal compartments, suggesting the SMCs display a buffering capacity at certain concentrations. The findings herein strengthen the potential of each delivery strategy as a therapeutically relevant approach to functionally delivering macromolecular cargo to cells

    Household laundry detergents disrupt barrier integrity and induce inflammation in mouse and human skin

    Get PDF
    BackgroundEpithelial barrier impairment is associated with many skin and mucosal inflammatory disorders. Laundry detergents have been demonstrated to affect epithelial barrier function in vitro using air–liquid interface cultures of human epithelial cells.MethodsBack skin of C57BL/6 mice was treated with two household laundry detergents at several dilutions. Barrier function was assessed by electric impedance spectroscopy (EIS) and transepidermal water loss (TEWL) measurements after the 4 h of treatments with detergents. RNA sequencing (RNA‐seq) and targeted multiplex proteomics analyses in skin biopsy samples were performed. The 6‐h treatment effect of laundry detergent and sodium dodecyl sulfate (SDS) was investigated on ex vivo human skin.ResultsDetergent‐treated skin showed a significant EIS reduction and TEWL increase compared to untreated skin, with a relatively higher sensitivity and dose–response in EIS. The RNA‐seq showed the reduction of the expression of several genes essential for skin barrier integrity, such as tight junctions and adherens junction proteins. In contrast, keratinization, lipid metabolic processes, and epidermal cell differentiation were upregulated. Proteomics analysis showed that the detergents treatment generally downregulated cell adhesion‐related proteins, such as epithelial cell adhesion molecule and contactin‐1, and upregulated proinflammatory proteins, such as interleukin 6 and interleukin 1 beta. Both detergent and SDS led to a significant decrease in EIS values in the ex vivo human skin model.ConclusionThe present study demonstrated that laundry detergents and its main component, SDS impaired the epidermal barrier in vivo and ex vivo human skin. Daily detergent exposure may cause skin barrier disruption and may contribute to the development of atopic diseases

    Novel endosomolytic compounds enable highly potent delivery of antisense oligonucleotides

    Get PDF
    The therapeutic and research potentials of oligonucleotides (ONs) have been hampered in part by their inability to effectively escape endosomal compartments to reach their cytosolic and nuclear targets. Splice-switching ONs (SSOs) can be used with endosomolytic small molecule compounds to increase functional delivery. So far, development of these compounds has been hindered by a lack of high-resolution methods that can correlate SSO trafficking with SSO activity. Here we present in-depth characterization of two novel endosomolytic compounds by using a combination of microscopic and functional assays with high spatiotemporal resolution. This system allows the visualization of SSO trafficking, evaluation of endosomal membrane rupture, and quantitates SSO functional activity on a protein level in the presence of endosomolytic compounds. We confirm that the leakage of SSO into the cytosol occurs in parallel with the physical engorgement of LAMP1-positive late endosomes and lysosomes. We conclude that the new compounds interfere with SSO trafficking to the LAMP1-positive endosomal compartments while inducing endosomal membrane rupture and concurrent ON escape into the cytosol. The efficacy of these compounds advocates their use as novel, potent, and quick-acting transfection reagents for antisense ONs

    Analysis of Intraviral Protein-Protein Interactions of the SARS Coronavirus ORFeome

    Get PDF
    The severe acute respiratory syndrome coronavirus (SARS-CoV) genome is predicted to encode 14 functional open reading frames, leading to the expression of up to 30 structural and non-structural protein products. The functions of a large number of viral ORFs are poorly understood or unknown. In order to gain more insight into functions and modes of action and interaction of the different proteins, we cloned the viral ORFeome and performed a genome-wide analysis for intraviral protein interactions and for intracellular localization. 900 pairwise interactions were tested by yeast-two-hybrid matrix analysis, and more than 65 positive non-redundant interactions, including six self interactions, were identified. About 38% of interactions were subsequently confirmed by CoIP in mammalian cells. Nsp2, nsp8 and ORF9b showed a wide range of interactions with other viral proteins. Nsp8 interacts with replicase proteins nsp2, nsp5, nsp6, nsp7, nsp8, nsp9, nsp12, nsp13 and nsp14, indicating a crucial role as a major player within the replication complex machinery. It was shown by others that nsp8 is essential for viral replication in vitro, whereas nsp2 is not. We show that also accessory protein ORF9b does not play a pivotal role for viral replication, as it can be deleted from the virus displaying normal plaque sizes and growth characteristics in Vero cells. However, it can be expected to be important for the virus-host interplay and for pathogenicity, due to its large number of interactions, by enhancing the global stability of the SARS proteome network, or play some unrealized role in regulating protein-protein interactions. The interactions identified provide valuable material for future studies

    Lipophilic Peptide Dendrimers for Delivery of Splice-Switching Oligonucleotides

    No full text
    Non-viral transfection reagents are continuously being developed in attempt to replace viral vectors. Among those non-viral vectors, dendrimers have gained increasing interest due to their unique molecular structure and multivalency. However, more improvements are still needed to achieve higher efficacy and lower toxicity. In this study, we have examined 18 peptide dendrimers conjugated to lipophilic moieties, such as fatty acids or hydrophobic amino acids, that were previously explored for siRNA. Reporter cells were employed to investigate the transfection of single strand splice-switching oligonucleotides (ONs) using these peptide dendrimers. Luciferase level changes reflecting efficiency varied with amino acid composition, stereochemistry, and complexation media used. 3rd generation peptide dendrimers with D-amino acid configuration were superior to L-form. Lead formulations with 3rd generation, D-amino acid peptide dendrimers increased the correction level of the delivered ON up to 93-fold over untreated HeLa Luc/705 cells with minimal toxicity. To stabilize the formed complexes, Polyvinyl alcohol 18 (PVA18) polymer was added. Although PVA18 addition increased activity, toxicity when using our best candidates G 2,3KL-(Leu)4 (D) and G 2,3KL-diPalmitamide (D) was observed. Our findings demonstrate the potential of lipid-conjugated, D-amino acid-containing peptide dendrimers to be utilized as an effective and safe delivery vector for splice-switching ONs

    Lipid-based Transfection Reagents Exhibit Cryo-induced Increase in Transfection Efficiency

    No full text
    The advantages of lipid-based transfection reagents have permitted their widespread use in molecular biology and gene therapy. This study outlines the effect of cryo-manipulation of a cationic lipid-based formulation, Lipofectamine 2000, which, after being frozen and thawed, showed orders of magnitude higher plasmid delivery efficiency throughout eight different cell lines, without compromising cell viability. Increased transfection efficiency with the freeze-thawed reagent was also seen with 2'-O-methyl phosphorothioate oligonucleotide delivery and in a splice-correction assay. Most importantly, a log-scale improvement in gene delivery using the freeze-thawed reagent was seen in vivo. Using three different methods, we detected considerable differences in the polydispersity of the different nucleic acid complexes as well as observed a clear difference in their surface spreading and sedimentation, with the freeze-thawed ones displaying substantially higher rate of dispersion and deposition on the glass surface. This hitherto overlooked elevated potency of the freeze-thawed reagent facilitates the targeting of hard-to-transfect cells, accomplishes higher transfection rates, and decreases the overall amount of reagent needed for delivery. Additionally, as we also saw a slight increase in plasmid delivery using other freeze-thawed transfection reagents, we postulate that freeze-thawing might prove to be useful for an even wider variety of transfection reagents
    corecore