30 research outputs found

    Genetic and environmental contributions to strabismus and phoria: Evidence from twins

    Get PDF
    AbstractThe causes of manifest (strabismus) and latent (phoria) misalignment of the visual axes are incompletely understood. We calculated genetic and environmental contributions to strabismus based upon a critical review and quantitative meta-analysis of previous strabismus twin studies (n=3418 twin pairs) and calculated contributions to phoria based upon a new twin study (n=307 twin pairs). Our results suggest that genetic liability is necessary to develop strabismus, whereas environmental factors are sufficient to cause most phorias. The different etiologies implied by this work suggest that strabismus and phoria should be carefully distinguished in epidemiological work

    What can Individual Differences Reveal about Face Processing?

    Get PDF
    Faces are probably the most widely studied visual stimulus. Most research on face processing has used a group-mean approach that averages behavioral or neural responses to faces across individuals and treats variance between individuals as noise. However, individual differences in face processing can provide valuable information that complements and extends findings from group-mean studies. Here we demonstrate that studies employing an individual differences approach—examining associations and dissociations across individuals—can answer fundamental questions about the way face processing operates. In particular these studies allow us to associate and dissociate the mechanisms involved in face processing, tie behavioral face processing mechanisms to neural mechanisms, link face processing to broader capacities and quantify developmental influences on face processing. The individual differences approach we illustrate here is a powerful method that should be further explored within the domain of face processing as well as fruitfully applied across the cognitive sciences

    Individual differences in trust evaluations are shaped mostly by environments, not genes

    Get PDF
    Data deposition: Data, code, and materials are available at the Open Science Framework, https://osf.io/35zf8/?view_only=e76c6755dcea4be2adc5b075cae896e8. The face impression tests can be viewed at https://www.testable.org/experiment/855/674205/start. This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1920131117/-/DCSupplemental.Peer reviewedPublisher PD

    Verified Self-Explaining Computation

    Get PDF
    Common programming tools, like compilers, debuggers, and IDEs, crucially rely on the ability to analyse program code to reason about its behaviour and properties. There has been a great deal of work on verifying compilers and static analyses, but far less on verifying dynamic analyses such as program slicing. Recently, a new mathematical framework for slicing was introduced in which forward and backward slicing are dual in the sense that they constitute a Galois connection. This paper formalises forward and backward dynamic slicing algorithms for a simple imperative programming language, and formally verifies their duality using the Coq proof assistant

    When One Size Does Not Fit All: A Simple Statistical Method to Deal with Across-Individual Variations of Effects

    Get PDF
    In science, it is a common experience to discover that although the investigated effect is very clear in some individuals, statistical tests are not significant because the effect is null or even opposite in other individuals. Indeed, t-tests, Anovas and linear regressions compare the average effect with respect to its inter-individual variability, so that they can fail to evidence a factor that has a high effect in many individuals (with respect to the intra-individual variability). In such paradoxical situations, statistical tools are at odds with the researcher’s aim to uncover any factor that affects individual behavior, and not only those with stereotypical effects. In order to go beyond the reductive and sometimes illusory description of the average behavior, we propose a simple statistical method: applying a Kolmogorov-Smirnov test to assess whether the distribution of p-values provided by individual tests is significantly biased towards zero. Using Monte-Carlo studies, we assess the power of this two-step procedure with respect to RM Anova and multilevel mixed-effect analyses, and probe its robustness when individual data violate the assumption of normality and homoscedasticity. We find that the method is powerful and robust even with small sample sizes for which multilevel methods reach their limits. In contrast to existing methods for combining p-values, the Kolmogorov-Smirnov test has unique resistance to outlier individuals: it cannot yield significance based on a high effect in one or two exceptional individuals, which allows drawing valid population inferences. The simplicity and ease of use of our method facilitates the identification of factors that would otherwise be overlooked because they affect individual behavior in significant but variable ways, and its power and reliability with small sample sizes (<30–50 individuals) suggest it as a tool of choice in exploratory studies

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore