4 research outputs found

    Emergent cosmology from quantum gravity in the Lorentzian Barrett-Crane tensorial group field theory model

    Get PDF
    We study the cosmological sector of the Lorentzian Barrett-Crane (BC) model coupled to a free massless scalar field in its Group Field Theory (GFT) formulation, corresponding to the mean-field hydrodynamics obtained from coherent condensate states. The relational evolution of the condensate with respect to the scalar field yields effective dynamics of homogeneous and isotropic cosmologies, similar to those previously obtained in SU(2)-based EPRL-like models. Also in this manifestly Lorentzian setting, in which only continuous SL(2,Bbb C)-representations are used, we obtain generalized Friedmann equations that generically exhibit a quantum bounce, and can reproduce all of the features of the cosmological dynamics of EPRL-like models. This lends support to the expectation that the EPRL-like and BC models may lie in the same continuum universality class, and that the quantum gravity mechanism producing effective bouncing scenarios may not depend directly on the discretization of geometric observables

    The Complete Barrett-Crane Model and its Causal Structure

    Full text link
    The causal structure is a quintessential element of continuum spacetime physics and needs to be properly encoded in a theory of Lorentzian quantum gravity. Established spin foam (and tensorial group field theory (TGFT)) models mostly work with relatively special classes of Lorentzian triangulations (e.g. built from spacelike tetrahedra only), obscuring the explicit implementation of the local causal structure at the microscopic level. We overcome this limitation and construct a full-fledged model for Lorentzian quantum geometry the building blocks of which include spacelike, lightlike and timelike tetrahedra. We realize this within the context of the Barrett-Crane TGFT model. Following an explicit characterization of the amplitudes via methods of integral geometry, and the ensuing clear identification of local causal structure, we analyze the model's amplitudes with respect to its (space)time-orientation properties and provide also a more detailed comparison with the framework of causal dynamical triangulations (CDT).Comment: 40 + 14 pages, 7 figure

    Scalar Cosmological Perturbations from Quantum Gravitational Entanglement

    Full text link
    A major challenge at the interface of quantum gravity and cosmology is to explain how the large-scale structure of the Universe emerges from physics at the Planck scale. In this letter, we take an important step in this direction by extracting the dynamics of scalar isotropic cosmological perturbations from full quantum gravity, as described by the causally complete Barrett-Crane group field theory model. From the perspective of the underlying quantum gravity theory, cosmological perturbations are represented as nearest-neighbor two-body entanglement of group field theory quanta. Their effective dynamics is obtained via mean-field methods and described relationally with respect to a physical Lorentz frame causally coupled to the quantum geometry. We quantitatively study these effective dynamical equations and show that at low energies they are perfectly consistent with those of General Relativity, while for trans-Planckian scales quantum effects become important. These results therefore not only provide crucial insights into the potentially purely quantum gravitational nature of cosmological perturbations, but also offer rich phenomenological implications for the physics of the early Universe.Comment: 6+1 pages, 2 figure

    RETRACTED: Gaining ethnoarchaeological insight into prehistoric southern African pigment mining practices

    No full text
    corecore