100 research outputs found

    Modeling the thermodynamics of the FeTi hydrogenation under para-equilibrium: an ab-initio and experimental study

    Full text link
    FeTi-based hydrides have recently re-attracted attention as stationary hydrogen storage materials due to favorable reversibility, good sorption kinetics and relatively low costs compared to alternative intermetallic hydrides. Employing the OpenCalphad software, the thermodynamics of the (FeTi)1x_{1-x}Hx_{x} (0 x\leq x \leq 1) system were assessed as a key basis for modeling hydrogenation of FeTi-based alloys. New thermodynamic data were acquired from our experimental pressure-composition-isotherm (PCI) curves, as well as first-principles calculations utilizing density functional theory (DFT). The thermodynamic phase models were carefully selected based on critical analysis of literature information and \emph{ab-initio} investigations. Key thermodynamic properties such as dissociation pressure, formation enthalpies and phase diagrams were calculated in good agreement to our performed experiments and literature-reported data. This work provides an initial perspective, which can be extended to account for higher-order thermodynamic assessments and subsequently enables the design of novel FeTi-based hydrides. In addition, the assessed thermodynamic data can serve as key inputs for kinetic models and hydride microstructure simulations.Comment: 15 pages, 7 figure

    Large-scale synthesis of mixed valence K3_3[Fe2_2S4_4] with high dielectric and ferrimagnetic characteristics

    Get PDF
    High yields of phase-pure K(3)[Fe(2)S(4)] are obtained using a fast, straight-forward, and efficient synthetic technique starting from the binary precursors K(2)S and FeS, and elemental sulphur. The compound indicates soft ferrimagnetic characteristics with magnetization of 15.23 A m(2) kg(−1) at 300 K due to the mixed valence of Fe(II)/Fe(III). Sintering at different temperatures allows the manipulation of the microstructure as well as the ratio of grains to grain boundaries. This results in a variation of dielectric and impedance properties. Samples sintered at 923 K demonstrate a dielectric constant (κ) of around 1750 at 1 kHz, which lies within the range of well-known high-κ dielectric materials, and an ionic conductivity of 4 × 10(−2) mS cm(−1) at room temperature. The compound has an optical band gap of around 2.0 eV, in agreement with tailored quantum chemical calculations. These results highlight its potential as a material comprising non-toxic and abundant elements for electronic and magnetic applications

    Rapid dissemination of Francisella tularensis and the effect of route of infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Francisella tularensis </it>subsp. <it>tularensis </it>is classified as a Category A bioweapon that is capable of establishing a lethal infection in humans upon inhalation of very few organisms. However, the virulence mechanisms of this organism are not well characterized. <it>Francisella tularensis </it>subsp. <it>novicida</it>, which is an equally virulent subspecies in mice, was used in concert with a microPET scanner to better understand its temporal dissemination in vivo upon intranasal infection and how such dissemination compares with other routes of infection. Adult mice were inoculated intranasally with <it>F. tularensis </it>subsp. <it>novicida </it>radiolabeled with <sup>64</sup>Cu and imaged by microPET at 0.25, 2 and 20 hours post-infection.</p> <p>Results</p> <p><sup>64</sup>Cu labeled <it>F. tularensis </it>subsp. <it>novicida </it>administered intranasally or intratracheally were visualized in the respiratory tract and stomach at 0.25 hours post infection. By 20 hours, there was significant tropism to the lung compared with other tissues. In contrast, the images of radiolabeled <it>F. tularensis </it>subsp. <it>novicida </it>when administered intragastrically, intradermally, intraperitoneally and intravenouslly were more generally limited to the gastrointestinal system, site of inoculation, liver and spleen respectively. MicroPET images correlated with the biodistribution of isotope and bacterial burdens in analyzed tissues.</p> <p>Conclusion</p> <p>Our findings suggest that Francisella has a differential tissue tropism depending on the route of entry and that the virulence of Francisella by the pulmonary route is associated with a rapid bacteremia and an early preferential tropism to the lung. In addition, the use of the microPET device allowed us to identify the cecum as a novel site of colonization of <it>Francisella tularensis </it>subsp. <it>novicida </it>in mice.</p

    Large Exchange Bias, High Dielectric Constant, and Outstanding Ionic Conductivity in a Single‐Phase Spin Glass

    Get PDF
    The multigram synthesis of K2[Fe3S4] starting from K2S and FeS is presented, and its electronic and magnetic properties are investigated. The title compound obtains a defect variant of the K[Fe2Se2] structure type. Dielectric and impedance measurements indicate a dielectric constant of 1120 at 1 kHz and an outstanding ionic conductivity of 24.37 mS cm–1 at 295 K, which is in the range of the highest reported value for potential solid‐state electrolytes for potassium‐ion batteries. The Seebeck coefficient of the n‐type conductor amounts to −60 µV K−1 at 973 K. The mismatch of the measured electrical resistivity and the predicted metal‐like band structure by periodic quantum chemical calculations indicates Mott insulating behavior. Magnetometry demonstrates temperature‐dependent, large exchange bias fields of 35 mT, as a consequence of the coexistence of spin glass and antiferromagnetic orderings due to the iron vacancies in the lattice. In addition, the decreasing training effects of 34% in the exchange bias are identified at temperatures lower than 20 K. These results demonstrate the critical role of iron vacancies in tuning the electronic and magnetic properties and a multifunctional material from abundant and accessible elements

    An effective activation method for industrially produced TiFeMn powder for hydrogen storage

    Get PDF
    This work proposes an effective thermal activation method with low technical effort for industrially produced titanium-iron-manganese powders (TiFeMn) for hydrogen storage. In this context, the influence of temperature and particle size of TiFeMn on the activation process is systematically studied. The results obtained from this investigation suggest that the activation of the TiFeMn material at temperatures as low as 50 °C is already possible, with a combination of “Dynamic” and “Static” routines, and that an increase to 90 °C strongly reduces the incubation time for activation, i.e. the incubation time of the sample with the two routines at 90 °C is about 0.84 h, while ∼ 277 h is required for the sample treated at 50 °C in both “Dynamic” and “Static” sequences. Selecting TiFeMn particles of larger size also leads to significant improvements in the activation performance of the investigated material. The proposed activation routine makes it possible to overcome the oxide layer existing on the compound surface, which acts as a diffusion barrier for the hydrogen atoms. This activation method induces further cracks and defects in the powder granules, generating new surfaces for hydrogen absorption with greater frequency, and thus leading to faster sorption kinetics in the subsequent absorption-desorption cycles

    Polypeptide-grafted macroporous polyHIPE by surface-initiated N-Carboxyanhydride (NCA) polymerization as a platform for bioconjugation

    Get PDF
    A new class of functional macroporous monoliths from polymerized high internal phase emulsion (polyHIPE) with tunable surface functional groups was developed by direct polypeptide surface grafting. In the first step, amino-functional polyHIPEs were obtained by the addition of 4-vinylbenzyl or 4-vinylbenzylphthalimide to the styrenic emulsion and thermal radical polymerization. The obtained monoliths present the expected open-cell morphology and a high surface area. The incorporated amino group was successfully utilized to initiate the ring-opening polymer- ization of benzyl-L-glutamate N-carboxyanhydride (BLG NCA) and benzyloxycarbonyl-L-lysine (Lys(Z)) NCA, which resulted in a dense homogeneous coating of polypeptides throughout the internal polyHIPE surfaces as confirmed by SEM and FTIR analysis. The amount of polypeptide grafted to the polyHIPE surfaces could be modulated by varying the initial ratio of amino acid NCA to amino-functional polyHIPE. Subsequent removal of the polypeptide protecting groups yielded highly functional polyHIPE-g-poly(glutamic acid) and polyHIPE-g- poly(lysine). Both types of polypeptide-grafted monoliths responded to pH by changes in their hydrohilicity. The possibility to use the high density of function (−COOH or −NH2) for secondary reaction was demonstrated by the successful bioconjugation of enhanced green fluorescent protein (eGFP) and fluorescein isocyanate (FITC) on the polymer 3D-scaffold surface. The amount of eGFP and FITC conjugated to the polypeptide-grafted polyHIPE was significantly higher than to the amino- functional polyHIPE, signifying the advantage of polypeptide grafting to achieve highly functional polyHIPEs
    corecore