286 research outputs found

    Search for n-nbar oscillation in Super-Kamiokande

    Full text link
    A search for neutron-antineutron (nnˉn-\bar{n}) oscillation was undertaken in Super-Kamiokande using the 1489 live-day or 2.45×10342.45 \times 10^{34} neutron-year exposure data. This process violates both baryon and baryon minus lepton numbers by an absolute value of two units and is predicted by a large class of hypothetical models where the seesaw mechanism is incorporated to explain the observed tiny neutrino masses and the matter-antimatter asymmetry in the Universe. No evidence for nnˉn-\bar{n} oscillation was found, the lower limit of the lifetime for neutrons bound in 16{}^{16}O, in an analysis that included all of the significant sources of experimental uncertainties, was determined to be 1.9×10321.9 \times 10^{32}~years at the 90\% confidence level. The corresponding lower limit for the oscillation time of free neutrons was calculated to be 2.7×1082.7 \times 10^8~s using a theoretical value of the nuclear suppression factor of 0.517×10230.517 \times 10^{23}~s1^{-1} and its uncertainty.Comment: 8 pages, 2 figure

    Search for n-nbar oscillation in Super-Kamiokande

    Full text link
    A search for neutron-antineutron (nnˉn-\bar{n}) oscillation was undertaken in Super-Kamiokande using the 1489 live-day or 2.45×10342.45 \times 10^{34} neutron-year exposure data. This process violates both baryon and baryon minus lepton numbers by an absolute value of two units and is predicted by a large class of hypothetical models where the seesaw mechanism is incorporated to explain the observed tiny neutrino masses and the matter-antimatter asymmetry in the Universe. No evidence for nnˉn-\bar{n} oscillation was found, the lower limit of the lifetime for neutrons bound in 16{}^{16}O, in an analysis that included all of the significant sources of experimental uncertainties, was determined to be 1.9×10321.9 \times 10^{32}~years at the 90\% confidence level. The corresponding lower limit for the oscillation time of free neutrons was calculated to be 2.7×1082.7 \times 10^8~s using a theoretical value of the nuclear suppression factor of 0.517×10230.517 \times 10^{23}~s1^{-1} and its uncertainty.Comment: 8 pages, 2 figure

    High-temperature deformation behavior of a gamma TiAl alloy-microstructural evolution and mechanisms

    Get PDF
    The present investigation was carried out in the context of the internal-variable theory of inelastic deformation and the dynamic-materials model (DMM), to shed light on the high-temperature deformation mechanisms in TiAl. A series of load-relaxation tests and tensile tests were conducted on a fine-grained duplex gamma TiAl alloy at temperatures ranging from 800 degreesC to 1050 degreesC. Results of the load-relaxation tests, in which the deformation took place at an infinitesimal level (epsilon congruent to 0.05), showed that the deformation behavior of the alloy was well described by the sum of dislocation-glide and dislocation-climb processes. To investigate the deformation behavior of the fine-grained duplex gamma TiAl alloy at a finite strain level, processing maps were constructed on the basis of a DMM. For this purpose, compression tests were carried out at temperatures ranging from 800 degreesC to 1250 degreesC using strain rates ranging from 10 to 10(-4)/s. Two domains were identified and characterized in the processing maps obtained at finite strain levels (0.2 and 0.6). One domain was found in the region of 980 degreesC and 10(-3)/s with a peak efficiency (maximum efficiency of power dissipation) of 48 pct and was identified as a domain of dynamic recrystallization (DRx) from microstructural observations. Another domain with a peak efficiency of 64 pct was located in the region of 1250 degreesC and 10(-4)/s and was considered to be a domain of superplasticity.ope

    Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA

    Get PDF
    Correlations between charged particles in deep inelastic ep scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C
    corecore