3 research outputs found

    Programmable RNA base editing with photoactivatable CRISPR-Cas13

    No full text
    Abstract CRISPR-Cas13 is widely used for programmable RNA interference, imaging, and editing. In this study, we develop a light-inducible Cas13 system called paCas13 by fusing Magnet with fragment pairs. The most effective split site, N351/C350, was identified and found to exhibit a low background and high inducibility. We observed significant light-induced perturbation of endogenous transcripts by paCas13. We further present a light-inducible base-editing system, herein called the padCas13 editor, by fusing ADAR2 to catalytically inactive paCas13 fragments. The padCas13 editor enabled reversible RNA editing under light and was effective in editing A-to-I and C-to-U RNA bases, targeting disease-relevant transcripts, and fine-tuning endogenous transcripts in mammalian cells in vitro. The padCas13 editor was also used to adjust post-translational modifications and demonstrated the ability to activate target transcripts in a mouse model in vivo. We therefore present a light-inducible RNA-modulating technique based on CRISPR-Cas13 that enables target RNAs to be diversely manipulated in vitro and in vivo, including through RNA degradation and base editing. The approach using the paCas13 system can be broadly applicable to manipulating RNA in various disease states and physiological processes, offering potential additional avenues for research and therapeutic development

    Optogenetic control of mRNA localization and translation in live cells

    No full text
    Despite efforts to visualize the spatio–temporal dynamics of single messenger RNAs, the ability to precisely control their function has lagged. This study presents an optogenetic approach for manipulating the localization and translation of specific mRNAs by trapping them in clusters. This clustering greatly amplified reporter signals, enabling endogenous RNA–protein interactions to be clearly visualized in single cells. Functionally, this sequestration reduced the ability of mRNAs to access ribosomes, markedly attenuating protein synthesis. A spatio–temporally resolved analysis indicated that sequestration of endogenous β-actin mRNA attenuated cell motility through the regulation of focal-adhesion dynamics. These results suggest a mechanism highlighting the indispensable role of newly synthesized β-actin protein for efficient cell migration. This platform may be broadly applicable for use in investigating the spatio–temporal activities of specific mRNAs in various biological processes.11Nsciescopu
    corecore