15 research outputs found

    Clinical application of genomic profiling to find druggable targets for adolescent and young adult (AYA) cancer patients with metastasis

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Background: Although adolescent and young adult (AYA) cancers are characterized by biological features and clinical outcomes distinct from those of other age groups, the molecular profile of AYA cancers has not been well defined. In this study, we analyzed cancer genomes from rare types of metastatic AYA cancers to identify driving and/or druggable genetic alterations. Methods: Prospectively collected AYA tumor samples from seven different patients were analyzed using three different genomics platforms (whole-exome sequencing, whole-transcriptome sequencing or OncoScan (TM)). Using well-known bioinformatics tools (bwa, Picard, GATK, MuTect, and Somatic Indel Detector) and our annotation approach with open access databases (DAVID and DGIdb), we processed sequencing data and identified driving genetic alterations and their druggability. Results: The mutation frequencies of AYA cancers were lower than those of other adult cancers (median = 0.56), except for a germ cell tumor with hypermutation. We identified patient-specific genetic alterations in candidate driving genes: RASA2 and NF1 (prostate cancer), TP53 and CDKN2C (olfactory neuroblastoma), FAT1, NOTCH1, and SMAD4 (head and neck cancer), KRAS (urachal carcinoma), EML4-ALK (lung cancer), and MDM2 and PTEN (liposarcoma). We then suggested potential drugs for each patient according to his or her altered genes and related pathways. By comparing candidate driving genes between AYA cancers and those from all age groups for the same type of cancer, we identified different driving genes in prostate cancer and a germ cell tumor in AYAs compared with all age groups, whereas three common alterations (TP53, FAT1, and NOTCH1) in head and neck cancer were identified in both groups. Conclusion: We identified the patient-specific genetic alterations and druggability of seven rare types of AYA cancers using three genomics platforms. Additionally, genetic alterations in cancers from AYA and those from all age groups varied by cancer type.

    Insertable Fast-Response Amperometric NO/CO Dual Microsensor: Study of Neurovascular Coupling during Acutely Induced Seizures of Rat Brain Cortex

    No full text
    This paper reports the fabrication of an insertable amperometric dual microsensor and its application for the simultaneous and fast sensing of NO and CO during acutely induced seizures of living rat brain cortex. NO and CO are important signaling mediators, controlling cerebrovascular tone. The dual NO/CO sensor is prepared based on a dual microelectrode having Au-deposited Pt microdisk (WE1, 76 μm diameter) and Pt black-deposited Pt disk (WE2, 50 μm diameter). The different deposited metals for WE1 and WE2 allow the selective anodic detection of CO at WE1 (+0.2 V vs Ag/AgCl) and that of NO at WE2 (+0.75 V vs Ag/AgCl) with sufficient sensitivity. Fluorinated xerogel coating on this dual electrode provides exclusive selectivity over common biological interferents, along with fast response time. The miniaturized size (end plane diameter < 300 μm) and tapered needle-like sensor geometry make the sensor become insertable into biological tissues. The sensor is applied to simultaneously monitor dynamic changes of NO and CO levels in a living rat brain under acute seizure condition induced by 4-aminopyridine in cortical tissue near the area of seizure induction. In-tissue measurement shows clearly defined patterns of NO/CO changes, directly correlated with observed LFP signal. Current study verifies the feasibility of a newly developed NO/CO dual sensor for real-time fast monitoring of intimately connected NO and CO dynamics. © 2016 American Chemical Society110101sciescopu

    Dual Electrochemical Microsensor for Real-Time Simultaneous Monitoring of Nitric Oxide and Potassium Ion Changes in a Rat Brain during Spontaneous Neocortical Epileptic Seizure

    No full text
    In this work, we developed a dual amperometric/potentiometric microsensor for sensing nitric oxide (NO) and potassium ion (K+). The dual NO/K+ sensor was prepared based on a dual recessed electrode possessing Pt (diameter, 50 μm) and Ag (diameter, 76.2 μm) microdisks. The Pt disk surface (WE1) was modified with electroplatinization and the following coating with fluorinated xerogel; and the Ag disk surface (WE2) was oxidized to AgCl on which K+ ion selective membrane was loaded subsequent to the silanization. WE1 and WE2 of a dual microsensor were used for amperometric sensing of NO (106 ± 28 pA μM-1, n = 10, at +0.85 V applied vs Ag/AgCl) and for potentiometric sensing of K+ (51.6 ± 1.9 mV pK-1, n = 10), respectively, with high sensitivity. In addition, the sensor showed good selectivity over common biological interferents, sufficiently fast response time and relevant stability (within 6 h in vivo experiment). The sensor had a small dimension (end plane diameter, 428 ± 97 μm, n = 20) and needle-like sharp geometry which allowed the sensor to be inserted in biological tissues. Taking advantage of this insertability, the sensor was applied for the simultaneous monitoring of NO and K+ changes in a living rat brain cortex at a depth of 1.19 ± 0.039 mm and near the spontaneous epileptic seizure focus. The seizures were induced with 4-aminopyridine injection onto the rat brain cortex. NO and K+ levels were dynamically changed in clear correlation with the electrophysiological recording of seizures. This indicates that the dual NO/K+ sensor's measurements well reflect membrane potential changes of neurons and associated cellular components of neurovascular coupling. The newly developed NO/K+ dual microsensor showed the feasibility of real-time fast monitoring of dynamic changes of closely linked NO and K+ in vivo. © 2016 American Chemical Society4

    Insertable Fast-Response Amperometric NO/CO Dual Microsensor: Study of Neurovascular Coupling During Acutely Induced Seizures of Rat Brain Cortex

    No full text
    This paper reports the fabrication of an insertable amperometric dual microsensor and its application for the simultaneous and fast sensing of NO and CO during acutely induced seizures of living rat brain cortex. NO and CO are important signaling mediators, controlling cerebrovascular tone. The dual NO/CO sensor is prepared based on a dual microelectrode having Au-deposited Pt microdisk (WE1, 76 μm diameter) and Pt black-deposited Pt disk (WE2, 50 μm diameter). The different deposited metals for WE1 and WE2 allow the selective anodic detection of CO at WE1 (+0.2 V vs Ag/AgCl) and that of NO at WE2 (+0.75 V vs Ag/AgCl) with sufficient sensitivity. Fluorinated xerogel coating on this dual electrode provides exclusive selectivity over common biological interferents, along with fast response time. The miniaturized size (end plane diameter < 300 μm) and tapered needle-like sensor geometry make the sensor become insertable into biological tissues. The sensor is applied to simultaneously monitor dynamic changes of NO and CO levels in a living rat brain under acute seizure condition induced by 4-aminopyridine in cortical tissue near the area of seizure induction. In-tissue measurement shows clearly defined patterns of NO/CO changes, directly correlated with observed LFP signal. Current study verifies the feasibility of a newly developed NO/CO dual sensor for real-time fast monitoring of intimately connected NO and CO dynamics

    The real-time in vivo electrochemical measurement of nitric oxide and carbon monoxide release upon direct epidural electrical stimulation of the rat neocortex

    No full text
    This study reports real-time, in vivo functional measurement of nitric oxide (NO) and carbon monoxide (CO), two gaseous mediators in controlling cerebral blood flow. A dual electrochemical NO/CO microsensor enables us to probe the complex relationship between NO and CO in regulating cerebrovascular tone. Utilizing this dual sensor, we monitor in vivo change of NO and CO simultaneously during direct epidural electrical stimulation of a living rat brain cortex. Both NO and CO respond quickly to meet physiological needs. The neural system instantaneously increases the released amounts of NO and CO to compensate the abrupt, yet transient hypoxia that results from epidural electrical stimulation. Intrinsicsignal optical imaging confirms that direct electrical stimulation elicits robust, dynamic changes in cerebral blood flow, which must accompany NO and CO signaling. The addition of L-arginine (a substrate for NO synthase, NOS) results in increased NO generation and decreased CO production compared to control stimulation. On the other hand, application of the NOS inhibitor, L-NG-nitroarginine methyl ester (L-NAME), results in decreased NO release but increased CO production of greater magnitude. This observation suggests that the interaction between NO and CO release is likely not linear and yet, they are tightly linked vasodilators.114141sciescopu

    Dual Electrochemical Microsensor for Real-Time Simultaneous Monitoring of Nitric Oxide and Potassium Ion Changes in a Rat Brain during Spontaneous Neocortical Epileptic Seizure

    No full text
    In this work, we developed a dual amperometric/potentiometric microsensor for sensing nitric oxide (NO) and potassium ion (K<sup>+</sup>). The dual NO/K<sup>+</sup> sensor was prepared based on a dual recessed electrode possessing Pt (diameter, 50 μm) and Ag (diameter, 76.2 μm) microdisks. The Pt disk surface (WE1) was modified with electroplatinization and the following coating with fluorinated xerogel; and the Ag disk surface (WE2) was oxidized to AgCl on which K<sup>+</sup> ion selective membrane was loaded subsequent to the silanization. WE1 and WE2 of a dual microsensor were used for amperometric sensing of NO (106 ± 28 pA μM<sup>–1</sup>, <i>n</i> = 10, at +0.85 V applied vs Ag/AgCl) and for potentiometric sensing of K<sup>+</sup> (51.6 ± 1.9 mV pK<sup>–1</sup>, <i>n</i> = 10), respectively, with high sensitivity. In addition, the sensor showed good selectivity over common biological interferents, sufficiently fast response time and relevant stability (within 6 h in vivo experiment). The sensor had a small dimension (end plane diameter, 428 ± 97 μm, <i>n</i> = 20) and needle-like sharp geometry which allowed the sensor to be inserted in biological tissues. Taking advantage of this insertability, the sensor was applied for the simultaneous monitoring of NO and K<sup>+</sup> changes in a living rat brain cortex at a depth of 1.19 ± 0.039 mm and near the spontaneous epileptic seizure focus. The seizures were induced with 4-aminopyridine injection onto the rat brain cortex. NO and K<sup>+</sup> levels were dynamically changed in clear correlation with the electrophysiological recording of seizures. This indicates that the dual NO/K<sup>+</sup> sensor’s measurements well reflect membrane potential changes of neurons and associated cellular components of neurovascular coupling. The newly developed NO/K<sup>+</sup> dual microsensor showed the feasibility of real-time fast monitoring of dynamic changes of closely linked NO and K<sup>+</sup> in vivo

    Redefining differential roles of MAO-A in dopamine degradation and MAO-B in tonic GABA synthesis

    No full text
    Monoamine oxidase (MAO) is believed to mediate the degradation of monoamine neurotransmitters, including dopamine, in the brain. Between the two types of MAO, MAO-B has been believed to be involved in dopamine degradation, which supports the idea that the therapeutic efficacy of MAO-B inhibitors in Parkinson&apos;s disease can be attributed to an increase in extracellular dopamine concentration. However, this belief has been controversial. Here, by utilizing in vivo phasic and basal electrochemical monitoring of extracellular dopamine with fast-scan cyclic voltammetry and multiple-cyclic square wave voltammetry and ex vivo fluorescence imaging of dopamine with GRAB(DA2m), we demonstrate that MAO-A, but not MAO-B, mainly contributes to striatal dopamine degradation. In contrast, our whole-cell patch-clamp results demonstrated that MAO-B, but not MAO-A, was responsible for astrocytic GABA-mediated tonic inhibitory currents in the rat striatum. We conclude that, in contrast to the traditional belief, MAO-A and MAO-B have profoundly different roles: MAO-A regulates dopamine levels, whereas MAO-B controls tonic GABA levels. Parkinson&apos;s disease: rewriting the roles of a critical enzyme The inhibition of two forms of an enzyme that modulate key processes in the brain has different benefits for patients with Parkinson&apos;s disease than previously thought. Monoamine oxidase (MAO) is present in the brain as MAO-A and MAO-B, both of which were thought to be involved in dopamine degradation. MAO inhibitors are used to limit dopamine degradation in Parkinson&apos;s disease and depression, improving symptoms by increasing levels of usable dopamine. In experiments on rats, Hyun-U Cho at Hanyang University, Seoul, South Korea, and coworkers have shown that MAO-A, but not MAO-B, affects dopamine degradation. The team found that MAO-B instead mediates the synthesis of a key neurotransmitter, GABA, the upregulation of which is linked to Parkinson&apos;s motor symptoms. Taking MAO-B inhibitors may be addressing these symptoms, explaining why patients show improvement.11Nsciescopu

    Cerebral Hemodynamics and Vascular Reactivity in Mild and Severe Ischemic Rodent Middle Cerebral Artery Occlusion Stroke Models

    No full text
    Ischemia can cause decreased cerebral neurovascular coupling, leading to a failure in the autoregulation of cerebral blood flow. This study aims to investigate the effect of varying degrees of ischemia on cerebral hemodynamic reactivity using in vivo realtime optical imaging. We utilized direct cortical stimulation to elicit hyper-excitable neuronal activation, which leads to induced hemodynamic changes in both the normal and middle cerebral artery occlusion (MCAO) ischemic stroke groups. Hemodynamic measurements from optical imaging accurately predict the severity of occlusion in mild and severe MCAO animals. There is neither an increase in cerebral blood volume nor in vessel reactivity in the ipsilateral hemisphere (I.H) of animals with severe MCAO. The pial artery in the contralateral hemisphere (C.H) of the severe MCAO group reacted more slowly than both hemispheres in the normal and mild MCAO groups. In addition, the arterial reactivity of the I.H in the mild MCAO animals was faster than the normal animals. Furthermore, artery reactivity is tightly correlated with histological and behavioral results in the MCAO ischemic group. Thus, in vivo optical imaging may offer a simple and useful tool to assess the degree of ischemia and to understand how cerebral hemodynamics and vascular reactivity are affected by ischemia. © Experimental Neurobiology 2016.2

    Effect of temporal interference electrical stimulation on phasic dopamine release in the striatum

    No full text
    Background: Temporal interference stimulation (TIS) is a neuromodulation technique that could stimulate deep brain regions by inducing interfering electrical signals based on high-frequency electrical stimulations of multiple electrode pairs from outside the brain. Despite numerous TIS studies, however, there has been limited investigation into the neurochemical effects of TIS. Objective: We performed two experiments to investigate the effect of TIS on the medial forebrain bundle (MFB)-evoked phasic dopamine (DA) response. Methods: In the first experiment, we applied TIS next to a carbon fiber microelectrode (CFM) to examine the modulation of the MFB-evoked phasic DA response in the striatum (STr). Beat frequencies and intensities of TIS were 0, 2, 6, 10, 20, 60, 130 Hz and 0, 100, 200, 300, 400, 500 μA. In the second experiment, we examined the effect of TIS with a 2 Hz beat frequency (based on the first experiment) on MFB-evoked phasic DA release when applied above the cortex (with a simulation-based stimulation site targeting the striatum). We employed 0 Hz and 2 Hz beat frequencies and a control condition without stimulation. Results: In the first experiment, TIS with a beat frequency of 2 Hz and an intensity of 400 μA or greater decreased MFB-evoked phasic DA release by roughly 40%, which continued until the experiment's end. In contrast, TIS at beat frequencies other than 2 Hz and intensities less than 400 μA did not affect MFB-evoked phasic DA release. In the second experiment, TIS with a 2 Hz beat frequency decreased only the MFB-evoked phasic DA response, but the reduction in DA release was not sustained. Conclusions: STr-applied and cortex-applied TIS with delta frequency dampens evoked phasic DA release in the STr. These findings demonstrate that TIS could influence the neurochemical modulation of the brain
    corecore