45 research outputs found

    Erythropoietin enhances hippocampal long-term potentiation and memory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Erythropoietin (EPO) improves cognition of human subjects in the clinical setting by as yet unknown mechanisms. We developed a mouse model of robust cognitive improvement by EPO to obtain the first clues of how EPO influences cognition, and how it may act on hippocampal neurons to modulate plasticity.</p> <p>Results</p> <p>We show here that a 3-week treatment of young mice with EPO enhances long-term potentiation (LTP), a cellular correlate of learning processes in the CA1 region of the hippocampus. This treatment concomitantly alters short-term synaptic plasticity and synaptic transmission, shifting the balance of excitatory and inhibitory activity. These effects are accompanied by an improvement of hippocampus dependent memory, persisting for 3 weeks after termination of EPO injections, and are independent of changes in hematocrit. Networks of EPO-treated primary hippocampal neurons develop lower overall spiking activity but enhanced bursting in discrete neuronal assemblies. At the level of developing single neurons, EPO treatment reduces the typical increase in excitatory synaptic transmission without changing the number of synaptic boutons, consistent with prolonged functional silencing of synapses.</p> <p>Conclusion</p> <p>We conclude that EPO improves hippocampus dependent memory by modulating plasticity, synaptic connectivity and activity of memory-related neuronal networks. These mechanisms of action of EPO have to be further exploited for treating neuropsychiatric diseases.</p

    Photoswitchable diacylglycerols enable optical control of protein kinase C.

    Get PDF
    Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling

    Modulation of High-Voltage Activated Ca 2+

    No full text

    ClpL is a functionally active tetradecameric AAA plus chaperone, distinct from hexameric/dodecameric ones

    No full text
    © 2020 Federation of American Societies for Experimental Biology. AAA+ (ATPases associated with diverse cellular activities) chaperones are involved in a plethora of cellular activities to ensure protein homeostasis. The function of AAA+ chaperones is mostly modulated by their hexameric/dodecameric quaternary structures. Here we report the structural and biochemical characterizations of a tetradecameric AAA+ chaperone, ClpL fromStreptococcus pneumoniae. ClpL exists as a tetradecamer in solution in the presence of ATP. The cryo-EM structure of ClpL at 4.5 angstrom resolution reveals a striking tetradecameric arrangement. Solution structures of ClpL derived from small-angle X-ray scattering data suggest that the tetradecameric ClpL could assume a spiral conformation found in active hexameric/dodecameric AAA+ chaperone structures. Vertical positioning of the middle domain accounts for the head-to-head arrangement of two heptameric rings. Biochemical activity assays with site-directed mutagenesis confirmed the critical roles of residues both in the integrity of the tetradecameric arrangement and activities of ClpL. Non-conserved Q321 and R670 are crucial in the heptameric ring assembly of ClpL. These results establish that ClpL is a functionally active tetradecamer, clearly distinct from hexameric/dodecameric AAA+ chaperones11sciescopu

    Skewed distribution of spines is independent of presynaptic transmitter release and synaptic plasticity and emerges early during adult neurogenesis

    No full text
    Dendritic spines are crucial for excitatory synaptic transmission as the size of a spine head correlates with the strength of its synapse. The distribution of spine head sizes follows a lognormal-like distribution with more small spines than large ones. We analysed the impact of synaptic activity and plasticity on the spine size distribution in adult-born hippocampal granule cells from rats with induced homo- and heterosynaptic long-term plasticity in vivo and CA1 pyramidal cells from Munc-13-1-Munc13-2 knockout mice with completely blocked synaptic transmission. Neither induction of extrinsic synaptic plasticity nor the blockage of presynaptic activity degrades the lognormal-like distribution but changes its mean, variance and skewness. The skewed distribution develops early in the life of the neuron. Our findings and their computational modelling support the idea that intrinsic synaptic plasticity is sufficient for the generation, while a combination of intrinsic and extrinsic synaptic plasticity maintains lognormal like distribution of spines

    ATP facilitates spontaneous glycinergic IPSC frequency at dissociated rat dorsal horn interneuron synapses

    No full text
    The ATP action on spontaneous miniature glycinergic inhibitory postsynaptic currents (mIPSCs) was investigated in rat substantia gelatinosa (SG) neurons mechanically dissociated from the 2nd layer of the dorsal horn in which their presynaptic glycinergic nerve terminals remained intact.ATP reversibly facilitated the frequency of the mIPSCs in a concentration-dependent manner without affecting their amplitude distribution. The ATP agonist, 2-methylthioATP (2MeSATP), mimicked the ATP action, while another ATP receptor agonist, αβ-methylene-ATP (α,β-meATP), had no effect on mIPSCs.The ATP receptor antagonists, suramin (1 × 10−6 M) and pyridoxal-5-phosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS) (1 × 10−5 M), completely blocked the facilitatory effect of ATP on glycine release (102·0 ± 11·2 % and 99·3 ± 16·2 %, n = 6, respectively) without altering the current amplitude distributions.N-Ethylmaleimide (NEM), a sulphydryl alkylating agent, suppressed the inhibitory effect of adenosine on mIPSC frequency (111·2 ± 13·3 %, n = 4) without altering the current amplitude distribution. However, ATP still facilitated the mIPSC frequency (693·3 ± 245·2 %, n = 4) even in the presence of NEM.The facilitatory effect of ATP (1 × 10−5 M) on mIPSC frequency was not affected by adding 1 × 10−4 M Cd2+ to normal external solution but was eliminated in a Ca2+-free external solution.These results suggest that ATP enhances glycine release from nerve terminals, presumably resulting in the inhibition of SG neurons which conduct nociceptive signals to the CNS. This presynaptic P2X-type ATP receptor may function to prevent excess excitability in SG neurons, thus preventing an excessive pain signal and/or SG cell death

    Perturbed Hippocampal Synaptic Inhibition and γ-Oscillations in a Neuroligin-4 Knockout Mouse Model of Autism

    Get PDF
    Loss-of-function mutations in the synaptic adhesion protein Neuroligin-4 are among the most common genetic abnormalities associated with autism spectrum disorders, but little is known about the function of Neuroligin-4 and the consequences of its loss. We assessed synaptic and network characteristics in Neuroligin-4 knockout mice, focusing on the hippocampus as a model brain region with a critical role in cognition and memory, and found that Neuroligin-4 deletion causes subtle defects of the protein composition and function of GABAergic synapses in the hippocampal CA3 region. Interestingly, these subtle synaptic changes are accompanied by pronounced perturbations of γ-oscillatory network activity, which has been implicated in cognitive function and is altered in multiple psychiatric and neurodevelopmental disorders. Our data provide important insights into the mechanisms by which Neuroligin-4-dependent GABAergic synapses may contribute to autism phenotypes and indicate new strategies for therapeutic approaches
    corecore