18,453 research outputs found

    Probing TeV scale Top-Philic Resonances with Boosted Top-Tagging at the High Luminosity LHC

    Get PDF
    We investigate the discovery potential of singly produced top-philic resonances at the high luminosity (HL) LHC in the four-top final state. Our analysis spans over the fully-hadronic, semi-leptonic, and same-sign dilepton channels where we present concrete search strategies adequate to a boosted kinematic regime and high jet-multiplicity environments. We utilize the Template Overlap Method (TOM) with newly developed template observables for tagging boosted top quarks, a large-radius jet variable MJM_J and customized b-tagging tactics for background discrimination. Our results show that the same-sign dilepton channel gives the best sensitivity among the considered channels, with an improvement of significance up to 10%-20% when combined with boosted-top tagging. Both the fully-hadronic and semi-leptonic channels yield comparable discovery potential and contribute to further enhancements in the sensitivity by combining all channels. Finally, we show the sensitivity of a top-philic resonance at the LHC and HL-LHC by showing the 2σ2\sigma exclusion limit and 5σ5\sigma discovery reach, including a combination of all three channels.Comment: 19 pages, 14 figure

    Boosted Event Topologies from TeV Scale Light Quark Composite Partners

    Get PDF
    We propose a new search strategy for quark partners which decay into a boosted Higgs and a light quark. As an example, we consider phenomenologically viable right handed up-type quark partners of mass 1\sim 1 TeV in composite pseudo-Nambu-Goldstone-boson Higgs models within the context of flavorful naturalness. Our results show that S/B>1S/B > 1 and signal significance of 7σ\sim 7\sigma is achievable at s=14\sqrt{s} = 14 TeV LHC with 35 fb1fb^{-1} of integrated luminosity, sufficient to claim discovery of a new particle. A combination of a multi-dimensional boosted Higgs tagging technique, kinematics of pair produced heavy objects and bb-tagging serves to efficiently diminish the large QCD backgrounds while maintaining adequate levels of signal efficiency. We present the analysis in the context of effective field theory, such that our results can be applied to any future search for pair produced vector-like quarks with decay modes to Higgs and a light jet.Comment: 18 pages, 7 figures, 5 tables, v2: short discussion added in Sec. 2, references added, corresponds to version published in JHE

    20 K superconductivity in heavily electron doped surface layer of FeSe bulk crystal

    Full text link
    A superconducting transition temperature Tc as high as 100 K was recently discovered in 1 monolayer (1ML) FeSe grown on SrTiO3 (STO). The discovery immediately ignited efforts to identify the mechanism for the dramatically enhanced Tc from its bulk value of 7 K. Currently, there are two main views on the origin of the enhanced Tc; in the first view, the enhancement comes from an interfacial effect while in the other it is from excess electrons with strong correlation strength. The issue is controversial and there are evidences that support each view. Finding the origin of the Tc enhancement could be the key to achieving even higher Tc and to identifying the microscopic mechanism for the superconductivity in iron-based materials. Here, we report the observation of 20 K superconductivity in the electron doped surface layer of FeSe. The electronic state of the surface layer possesses all the key spectroscopic aspects of the 1ML FeSe on STO. Without any interface effect, the surface layer state is found to have a moderate Tc of 20 K with a smaller gap opening of 4 meV. Our results clearly show that excess electrons with strong correlation strength alone cannot induce the maximum Tc, which in turn strongly suggests need for an interfacial effect to reach the enhanced Tc found in 1ML FeSe/STO.Comment: 5 pages, 4 figure

    Depressed clad hollow optical fiber with fundamental LP01 mode cut-off

    No full text
    We propose a depressed clad hollow optical fiber with fundamental (LP01) mode cut-off suitable for high power short-wavelength, especially three-level, fiber laser operation by introducing highly wavelength dependent losses at longer wavelengths. The cut-off characteristic of such fiber structure was investigated. A Yb-doped depressed clad hollow optical fiber laser generating 59.1W of output power at 1046nm with 86% of slope efficiency with respect to the absorbed pump power was realised by placing the LP01 mode cut-off at ~1100nm
    corecore