6,424 research outputs found

    Valuable rubidium extraction from potassium reduced seawater brine

    Full text link
    © 2017 Elsevier Ltd Extraction of rubidium (Rb) which is an economically valuable metal from seawater reverse osmosis (SWRO) brine is beneficial. However, potassium (K) in SWRO brine hinders Rb extraction. Natural clinoptilolite zeolite in powder form was able to selectively remove K from SWRO brine (Langmuir maximum sorption, Qmax (cal.) = 57.47 ± 0.09 mg/g). An integrated submerged membrane sorption reactor (SMSR) containing zeolite powder achieved 65% K removal from SWRO brine. Periodic replacement of zeolite in SMSR, coupled with membrane backwashing was effective in maintaining a high K removal efficiency and a stable transmembrane pressure. Less than 5% Rb losses occurred along with K sorption, establishing the high K selectivity by zeolite in SWRO brine. Utilization of K loaded zeolite as a slow release fertilizer would be beneficial for agriculture. In SWRO brine with reduced K contents, the Rb sorption efficiency of polymer encapsulated potassium copper hexacyanoferrate (KCuFC(PAN)) sorbent, increased significantly from 18% to 83%

    Orbital ordering and enhanced magnetic frustration of strained BiMnO3 thin films

    Full text link
    Epitaxial thin films of multiferroic perovskite BiMnO3 were synthesized on SrTiO3 substrates, and orbital ordering and magnetic properties of the thin films were investigated. The ordering of the Mn^{3+} e_g orbitals at a wave vector (1/4 1/4 1/4) was detected by Mn K-edge resonant x-ray scattering. This peculiar orbital order inherently contains magnetic frustration. While bulk BiMnO3 is known to exhibit simple ferromagnetism, the frustration enhanced by in-plane compressive strains in the films brings about cluster-glass-like properties.Comment: 8 pages, 4 figures, accepted to Europhysics Letter

    Singlet-doublet Higgs mixing and its implications on the Higgs mass in the PQ-NMSSM

    Full text link
    We examine the implications of singlet-doublet Higgs mixing on the properties of a Standard Model (SM)-like Higgs boson within the Peccei-Quinn invariant extension of the NMSSM (PQ-NMSSM). The SM singlet added to the Higgs sector connects the PQ and visible sectors through a PQ-invariant non-renormalizable K\"ahler potential term, making the model free from the tadpole and domain-wall problems. For the case that the lightest Higgs boson is dominated by the singlet scalar, the Higgs mixing increases the mass of a SM-like Higgs boson while reducing its signal rate at collider experiments compared to the SM case. The Higgs mixing is important also in the region of parameter space where the NMSSM contribution to the Higgs mass is small, but its size is limited by the experimental constraints on the singlet-like Higgs boson and on the lightest neutralino constituted mainly by the singlino whose Majorana mass term is forbidden by the PQ symmetry. Nonetheless the Higgs mixing can increase the SM-like Higgs boson mass by a few GeV or more even when the Higgs signal rate is close to the SM prediction, and thus may be crucial for achieving a 125 GeV Higgs mass, as hinted by the recent ATLAS and CMS data. Such an effect can reduce the role of stop mixing.Comment: 26 pages, 3 figures; published in JHE

    Natural Islands for a 125 GeV Higgs in the scale-invariant NMSSM

    Full text link
    We study whether a 125 GeV standard model-like Higgs boson can be accommodated within the scale-invariant NMSSM in a way that is natural in all respects, i.e., not only is the stop mass and hence its loop contribution to Higgs mass of natural size, but we do not allow significant tuning of NMSSM parameters as well. We pursue as much as possible an analytic approach which gives clear insights on various ways to accommodate such a Higgs mass, while conducting complementary numerical analyses. We consider both scenarios with singlet-like state being heavier and lighter than SM-like Higgs. With A-terms being small, we find for the NMSSM to be perturbative up to GUT scale, it is not possible to get 125 GeV Higgs mass, which is true even if we tune parameters of NMSSM. If we allow some of the couplings to become non-perturbative below the GUT scale, then the non-tuned option implies that the singlet self-coupling, kappa, is larger than the singlet-Higgs coupling, lambda, which itself is order 1. This leads to a Landau pole for these couplings close to the weak scale, in particular below ~10^4 TeV. In both the perturbative and non-perturbative NMSSM, allowing large A_lambda, A_kappa gives "more room" to accommodate a 125 GeV Higgs, but a tuning of these A-terms may be needed. In our analysis we also conduct a careful study of the constraints on the parameter space from requiring global stability of the desired vacuum fitting a 125 GeV Higgs, which is complementary to existing literature. In particular, as the singlet-Higgs coupling lambda increases, vacuum stability becomes more serious of an issue.Comment: 34 pages, 4 figures, references added, minor corrections to text and figures, version to be published in JHE

    Universal time-dependent deformations of Schrodinger geometry

    Get PDF
    We investigate universal time-dependent exact deformations of Schrodinger geometry. We present 1) scale invariant but non-conformal deformation, 2) non-conformal but scale invariant deformation, and 3) both scale and conformal invariant deformation. All these solutions are universal in the sense that we could embed them in any supergravity constructions of the Schrodinger invariant geometry. We give a field theory interpretation of our time-dependent solutions. In particular, we argue that any time-dependent chemical potential can be treated exactly in our gravity dual approach.Comment: 24 pages, v2: references adde

    Influences of H on the Adsorption of a Single Ag Atom on Si(111)-7 × 7 Surface

    Get PDF
    The adsorption of a single Ag atom on both clear Si(111)-7 × 7 and 19 hydrogen terminated Si(111)-7 × 7 (hereafter referred as 19H-Si(111)-7 × 7) surfaces has been investigated using first-principles calculations. The results indicated that the pre-adsorbed H on Si surface altered the surface electronic properties of Si and influenced the adsorption properties of Ag atom on the H terminated Si surface (e.g., adsorption site and bonding properties). Difference charge density data indicated that covalent bond is formed between adsorbed Ag and H atoms on 19H-Si(111)-7 × 7 surface, which increases the adsorption energy of Ag atom on Si surface

    Edge overload breakdown in evolving networks

    Full text link
    We investigate growing networks based on Barabasi and Albert's algorithm for generating scale-free networks, but with edges sensitive to overload breakdown. the load is defined through edge betweenness centrality. We focus on the situation where the average number of connections per vertex is, as the number of vertices, linearly increasing in time. After an initial stage of growth, the network undergoes avalanching breakdowns to a fragmented state from which it never recovers. This breakdown is much less violent if the growth is by random rather than preferential attachment (as defines the Barabasi and Albert model). We briefly discuss the case where the average number of connections per vertex is constant. In this case no breakdown avalanches occur. Implications to the growth of real-world communication networks are discussed.Comment: To appear in Phys. Rev.
    corecore