1,662 research outputs found

    Development of Metrology for Modern Biology

    Get PDF

    Improvement of retinoids production in recombinant E. coli using glyoxylic acid

    Get PDF
    Isoprenoids are the most chemically diverse compounds found in nature. They are present in all organisms and have essential roles in membrane structure, redox chemistry, reproductive cycles, growth regulation, signal transduction and defense mechanisms. In spite of their diversity of functions and structures, all isoprenoids are derived from the common building blocks of isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). Optimization of IPP synthesis pathway is of benefit to mass production of various isoprenoids. There are two pathways of 2-C-Methyl-D-erythritol-4-phosphate (MEP) and mevalonate (MVA) for IPP synthesis. Prokaryotes including E. coli generally use MEP pathway whereas MVA pathway is used in eukaryotes. To improve isoprenoid production, it was performed the deletion of genes in E. coli, which are involved in both formation of fermentation by-products such as organic acids and alcohols, and consumption of precursors of MEP and MVA pathways, pyruvate and acetyl-CoA. As a result, we were able to develop a strain with improved fermentation productivity and carbon source utilization efficiency, the mutant strain was called AceCo. Higher lycopene production was achieved in the AceCo strain compared to the wild type MG1655 strain due to no formation of the inhibitory by-products. However, retinoids production of AceCo strain decreased to a half of that of MG1655 strain. Please click Additional Files below to see the full abstract

    Assessment of satellite rainfall nowcasting based on extrapolation technique

    Get PDF
    PĂłster presentado en: 3rd European Nowcasting Conference, celebrada en la sede central de AEMET en Madrid del 24 al 26 de abril de 2019

    Estimation of utility weights for human papilloma virus-related health states according to disease severity

    Get PDF
    Scenarios for the different HPV-related health states. (DOCX 38 kb

    Sequential whole cell conversion process for production of D-psicose and D- mannitol from D-fructose

    Get PDF
    Rare sugars, which exist only limited quantities naturally, have received considerable attention because of its various specific nutritional and biological functions. Likewise, D-psicose (D-ribo-2-hexulose or D-allulose), a C-3 epimer of D-fructose, has many uses which include reducing intra-abdominal fat accumulation, protecting pancreas beta-islets and improving insulin sensitivity. Especially, D-psicose has only 0.3% calories compared to sucrose, while it has 70% relative sweetness. Additionally, in 2012, D-psicose was approved as a food additive and designated as Generally Recognized As Safe (GRAS) by Food and Drug Administration (FDA). Despite such abundant advantages, there is no economical way of mass production of D-psicose. Recently, biological production of D-psicose from D-fructose using D-psicose 3-epimerase (DPE) has been developed. However, the conversion yield is below 30%, which causes an undesirable increase of purification cost because of the similar solubility of D-psicose and D-fructose. Thus, we addressed the problem by converting the residual fructose, after the reaction of D-psicose production, to D-mannitol, which has a low solubility. The sequential whole cell conversion reactions for D-psicose and D-mannitol allow a convenient and economic purification of both products. This work was supported by a grant from the Next-Generation BioGreen 21 Program (SSAC, grant#: PJ01106201), RDA, Korea. Reference 1) Carsten Bäumchen & Stephanie Bringer-Meyer (2007), Expression of glf Z.m. increases D-mannitol formation in whole cell biotransformation with resting cells of Corynebacterium glutamicum, Appl Microbiol Biotechnol 76(3):545–52. 2) Ortiz, M. E., Bleckwedel, J., Raya, R. R., & Mozzi, F. (2013). Biotechnological and in situ food production of polyols by lactic acid bacteria, Appl Microbiol Biotechnol 97:4713-4726 3) Park, Y., Oh, E. J., Jo, J., Jin, Y., & Seo, J. (2016). Recent advances in biological production of sugar alcohols. Curr Opin Biotechnol 37:105–113

    Iterative Soft Decoding Algorithm for DNA Storage Using Quality Score and Redecoding

    Full text link
    Ever since deoxyribonucleic acid (DNA) was considered as a next-generation data-storage medium, lots of research efforts have been made to correct errors occurred during the synthesis, storage, and sequencing processes using error correcting codes (ECCs). Previous works on recovering the data from the sequenced DNA pool with errors have utilized hard decoding algorithms based on a majority decision rule. To improve the correction capability of ECCs and robustness of the DNA storage system, we propose a new iterative soft decoding algorithm, where soft information is obtained from FASTQ files and channel statistics. In particular, we propose a new formula for log-likelihood ratio (LLR) calculation using quality scores (Q-scores) and a redecoding method which may be suitable for the error correction and detection in the DNA sequencing area. Based on the widely adopted encoding scheme of the fountain code structure proposed by Erlich et al., we use three different sets of sequenced data to show consistency for the performance evaluation. The proposed soft decoding algorithm gives 2.3% ~ 7.0% improvement of the reading number reduction compared to the state-of-the-art decoding method and it is shown that it can deal with erroneous sequenced oligo reads with insertion and deletion errors

    A Case of Oular Sparganosis in Korea

    Get PDF
    • …
    corecore