903 research outputs found

    Certificateless Public Auditing Protocol with Constant

    Get PDF
    To provide the integrity of outsourced data in the cloud storage services, many public auditing schemes which allow a user to check the integrity of the outsourced data have been proposed. Since most of the schemes are constructed on Public Key Infrastructure (PKI), they suffer from several concerns like management of certificates. To resolve the problems, certificateless public auditing schemes also have been studied in recent years. In this paper, we propose a certificateless public auditing scheme which has the constant-time verification algorithm. Therefore, our scheme is more efficient than previous certificateless public auditing schemes. To prove the security of our certificateless public auditing scheme, we first define three formal security models and prove the security of our scheme under the three security models

    Growth and atomically resolved polarization mapping of ferroelectric Bi2WO6Bi_2WO_6 thin film

    Full text link
    Aurivillius ferroelectric Bi2WO6Bi_2WO_6 (BWO) encompasses a broad range of functionalities, including robust fatigue-free ferroelectricity, high photocatalytic activity, and ionic conductivity. Despite these promising characteristics, an in-depth study on the growth of BWO thin films and ferroelectric characterization, especially at the atomic scale, is still lacking. Here, we report pulsed laser deposition (PLD) of BWO thin films on (001) SrTiO3SrTiO_3 substrates and characterization of ferroelectricity using the scanning transmission electron microscopy (STEM) and piezoresponse force microscopy (PFM) techniques. We show that the background oxygen gas pressure used during PLD growth mainly determines the phase stability of BWO films, whereas the influence of growth temperature is comparatively minor. Atomically resolved STEM study of a fully strained BWO film revealed collective in-plane polar off-centering displacement of W atoms. We estimated the spontaneous polarization value based on polar displacement mapping to be about 54 ±\pm 4 μCcm2{\mu}C cm^{-2}, which is in good agreement with the bulk polarization value. Furthermore, we found that pristine film is composed of type-I and type-II domains, with mutually orthogonal polar axes. Complementary PFM measurements further elucidated that the coexisting type-I and type-II domains formed a multidomain state that consisted of 90deg\deg domain walls (DWs) alongside multiple head-to-head and tail-to-tail 180deg\deg DWs. Application of an electrical bias led to in-plane 180deg\deg polarization switching and 90deg\deg polarization rotation, highlighting a unique aspect of domain switching, which is immune to substrate-induced strain.Comment: This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Electronic Materials, \copyright American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see: https://pubs.acs.org/doi/full/10.1021/acsaelm.1c00005 .This submission contains 34 page

    Geopotential Field Anomaly Continuation with Multi-Altitude Observations

    Get PDF
    Conventional gravity and magnetic anomaly continuation invokes the standard Poisson boundary condition of a zero anomaly at an infinite vertical distance from the observation surface. This simple continuation is limited, however, where multiple altitude slices of the anomaly field have been observed. Increasingly, areas are becoming available constrained by multiple boundary conditions from surface, airborne, and satellite surveys. This paper describes the implementation of continuation with multi-altitude boundary conditions in Cartesian and spherical coordinates and investigates the advantages and limitations of these applications. Continuations by EPS (Equivalent Point Source) inversion and the FT (Fourier Transform), as well as by SCHA (Spherical Cap Harmonic Analysis) are considered. These methods were selected because they are especially well suited for analyzing multi-altitude data over finite patches of the earth such as covered by the ADMAP database. In general, continuations constrained by multi-altitude data surfaces are invariably superior to those constrained by a single altitude data surface due to anomaly measurement errors and the non-uniqueness of continuation

    Oxygen Partial Pressure during Pulsed Laser Deposition: Deterministic Role on Thermodynamic Stability of Atomic Termination Sequence at SrRuO3/BaTiO3 Interface

    Full text link
    With recent trends on miniaturizing oxide-based devices, the need for atomic-scale control of surface/interface structures by pulsed laser deposition (PLD) has increased. In particular, realizing uniform atomic termination at the surface/interface is highly desirable. However, a lack of understanding on the surface formation mechanism in PLD has limited a deliberate control of surface/interface atomic stacking sequences. Here, taking the prototypical SrRuO3/BaTiO3/SrRuO3 (SRO/BTO/SRO) heterostructure as a model system, we investigated the formation of different interfacial termination sequences (BaO-RuO2 or TiO2-SrO) with oxygen partial pressure (PO2) during PLD. We found that a uniform SrO-TiO2 termination sequence at the SRO/BTO interface can be achieved by lowering the PO2 to 5 mTorr, regardless of the total background gas pressure (Ptotal), growth mode, or growth rate. Our results indicate that the thermodynamic stability of the BTO surface at the low-energy kinetics stage of PLD can play an important role in surface/interface termination formation. This work paves the way for realizing termination engineering in functional oxide heterostructures.Comment: 27 pages, 6 figures, Supporting Informatio

    A tracheoinnominate artery fistula presenting with massive hemorrhage in a 13-year-old boy

    Get PDF
    Despite its rarity, a tracheoinnominate artery fistula can result in catastrophic hemorrhage. Here, we describe a case of a 13-year-old boy with such a condition following tracheostomy. After identification of pulsatile bleeding from the tracheostoma, temporary control of hemorrhage was obtained using hyperinflation of the tracheostomy tube cuff. Subsequently, a lesion indicative of a tracheoinnominate artery fistula was found on a computed tomography scan, and the diagnosis was confirmed at surgery. After surgery, he was discharged with no recurrent bleeding. This case highlights the importance of high suspicion and prompt management of tracheoinnominate artery fistula

    First-time comparison between NO2 vertical columns from GEMS and Pandora measurements

    Get PDF
    The Geostationary Environmental Monitoring Spectrometer (GEMS) is a UV&ndash;visible spectrometer onboard the GEO-KOMPSAT-2B satellite launched into geostationary orbit in February 2020. To evaluate GEMS NO2 column data, comparison was carried out using NO2 vertical column density (VCD) measured using direct-sunlight observations by the Pandora spectrometer system at four sites in Seosan, South Korea, during November 2020 to January 2021. Correlation coefficients between GEMS and Pandora NO2 data at four sites ranged from 0.35 to 0.48, with root mean square errors (RMSEs) from 4.7 &times; 1015 molec. cm-2 to 5.5 &times; 1015 molec. cm-2 for cloud fraction (CF) &lt; 0.7. Higher correlation coefficients of 0.62&ndash;0.78 with lower RMSEs from 3.3 &times; 1015 molec. cm-2 to 4.3 &times; 1015 molec. cm-2 were found with CF &lt; 0.3, indicating the higher sensitivity of GEMS to atmospheric NO2 in less-cloudy conditions. Overall, GEMS NO2 column data tend to be lower than those of Pandora due to differences in representative spatial coverage, with a large negative bias under high-CF conditions. With correction for horizontal representativeness in Pandora measurement coverage, the correlation coefficients range from 0.69 to 0.81 with RMSEs from 3.2 &times; 1015 molec. cm-2 to 4.9 &times; 1015 molec. cm-2 were achieved for CF &lt; 0.3, showing the better correlation with the correction than that without the correction.</p

    First-time comparison between NO2 vertical columns from Geostationary Environmental Monitoring Spectrometer (GEMS) and Pandora measurements

    Get PDF
    The Geostationary Environmental Monitoring Spectrometer (GEMS) is a UV-visible (UV-Vis) spectrometer on board the GEO-KOMPSAT-2B (Geostationary Korea Multi-Purpose Satellite 2B) satellite launched into a geostationary orbit in February 2020. To evaluate the GEMS NO2 total column data, a comparison was carried out using the NO2 vertical column density (VCD) that measured direct sunlight using the Pandora spectrometer system at four sites in Seosan, South Korea, from November 2020 to January 2021. Correlation coefficients between GEMS and Pandora NO2 data at four sites ranged from 0.35 to 0.48, with root mean square errors (RMSEs) from 4.7×1015 to 5.5×1015 molec. cm−2 for a cloud fraction (CF) &lt;0.7. Higher correlation coefficients of 0.62–0.78 with lower RMSEs from 3.3×1015 to 5.0×1015 molec. cm−2 were found with CF &lt;0.3, indicating the higher sensitivity of GEMS to atmospheric NO2 in less cloudy conditions. Overall, the GEMS NO2 total column data tended to be lower than the Pandora data, owing to differences in the representative spatial coverage, with a large negative bias under high CF conditions. With a correction for horizontal representativeness in the Pandora measurement coverage, correlation coefficients ranging from 0.69 to 0.81, with RMSEs from 3.2×1015 to 4.9×1015 molec. cm−2, were achieved for CF &lt;0.3, showing a better correlation with the correction than without the correction.</p
    corecore