16,203 research outputs found

    RGB generation by four-wave mixing in small-core holey fibers

    No full text
    We report the generation of white light comprising red, green, and blue spectral bands from a frequency-doubled fiber laser by an efficient four-wave mixing process in submicron-sized cores of microstructured holey fibers. A master-oscillator power amplifier (MOPA) source based on Yb-doped fiber is employed to generate 80 ps pulses at 1060 nm wavelength with 32 MHz repetition rate, which are then frequency-doubled in an LBO crystal to generate up to 2 W average power of green light. The green pump is then carefully launched into secondary cores of the cladding of photonic bandgap fibers. These secondary cores with diameters of about 400 to 800 nm act as highly nonlinear waveguides. At the output, we observe strong red and blue sidebands which, together with the remaining green pump light, form a visible white light source of about 360 mW. The generating process is identified as four-wave mixing where phase matching is achieved by birefringence in the secondary cores which arises from non-symmetric deformation during the fiber fabrication. Numerical models of the fiber structure and of the nonlinear processes confirm our interpretation. Finally, we discuss power scaling and limitations of the white light source due to the damage threshold of silica fibers

    Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans

    Get PDF
    Mineral dust supplied to remote ocean regions stimulates phytoplankton growth through delivery of micronutrients, notably iron (Fe). Although attention is usually paid to Fe (hydr)oxides as major sources of available Fe, Fe-bearing clay minerals are typically the dominant phase in mineral dust. The mineralogy and chemistry of clay minerals in dust particles, however, are largely unknown. We conducted microscopic identification and chemical analysis of the clay minerals in Asian and Saharan dust particles. Cross-sectional slices of dust particles were prepared by focused ion beam (FIB) techniques and analyzed by transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDXS). TEM images of FIB slices revealed that clay minerals occurred as either nano-thin platelets or relatively thick plates. Chemical compositions and lattice fringes of the nano-thin platelets suggested that they included illite, smectite, illite–smectite mixed layers, and their nanoscale mixtures (illite–smectite series clay minerals, ISCMs) which could not be resolved with an electron microbeam. EDXS chemical analysis of the clay mineral grains revealed that the average Fe content was 5.8% in nano-thin ISCM platelets assuming 14% H2O, while the Fe content of illite and chlorite was 2.8 and 14.8%, respectively. In addition, TEM and EDXS analyses were performed on clay mineral grains dispersed and loaded on micro-grids. The average Fe content of clay mineral grains was 6.7 and 5.4% in Asian and Saharan dusts, respectively. A comparative X-ray diffraction analysis of bulk dusts showed that Saharan dust was more enriched in clay minerals than Asian dust, while Asian dust was more enriched in chlorite. Clay minerals, in particular nanocrystalline ISCMs and Fe-rich chlorite, are probably important sources of Fe to remote marine ecosystems. Further detailed analyses of the mineralogy and chemistry of clay minerals in global mineral dusts are required to evaluate the inputs of Fe to surface ocean microbial communities

    Depressed clad hollow optical fiber with fundamental LP01 mode cut-off

    No full text
    We propose a depressed clad hollow optical fiber with fundamental (LP01) mode cut-off suitable for high power short-wavelength, especially three-level, fiber laser operation by introducing highly wavelength dependent losses at longer wavelengths. The cut-off characteristic of such fiber structure was investigated. A Yb-doped depressed clad hollow optical fiber laser generating 59.1W of output power at 1046nm with 86% of slope efficiency with respect to the absorbed pump power was realised by placing the LP01 mode cut-off at ~1100nm

    Metabolite essentiality elucidates robustness of Escherichia coli metabolism

    Full text link
    Complex biological systems are very robust to genetic and environmental changes at all levels of organization. Many biological functions of Escherichia coli metabolism can be sustained against single-gene or even multiple-gene mutations by using redundant or alternative pathways. Thus, only a limited number of genes have been identified to be lethal to the cell. In this regard, the reaction-centric gene deletion study has a limitation in understanding the metabolic robustness. Here, we report the use of flux-sum, which is the summation of all incoming or outgoing fluxes around a particular metabolite under pseudo-steady state conditions, as a good conserved property for elucidating such robustness of E. coli from the metabolite point of view. The functional behavior, as well as the structural and evolutionary properties of metabolites essential to the cell survival, was investigated by means of a constraints-based flux analysis under perturbed conditions. The essential metabolites are capable of maintaining a steady flux-sum even against severe perturbation by actively redistributing the relevant fluxes. Disrupting the flux-sum maintenance was found to suppress cell growth. This approach of analyzing metabolite essentiality provides insight into cellular robustness and concomitant fragility, which can be used for several applications, including the development of new drugs for treating pathogens.Comment: Supplements available at http://stat.kaist.ac.kr/publication/2007/PJKim_pnas_supplement.pd

    The ergodicity bias in the observed galaxy distribution

    Full text link
    The spatial distribution of galaxies we observed is subject to the given condition that we, human beings are sitting right in a galaxy -- the Milky Way. Thus the ergodicity assumption is questionable in interpretation of the observed galaxy distribution. The resultant difference between observed statistics (volume average) and the true cosmic value (ensemble average) is termed as the ergodicity bias. We perform explicit numerical investigation of the effect for a set of galaxy survey depths and near-end distance cuts. It is found that the ergodicity bias in observed two- and three-point correlation functions in most cases is insignificant for modern analysis of samples from galaxy surveys and thus close a loophole in precision cosmology. However, it may become non-negligible in certain circumstances, such as those applications involving three-point correlation function at large scales of local galaxy samples. Thus one is reminded to take extra care in galaxy sample construction and interpretation of the statistics of the sample, especially when the characteristic redshift is low.Comment: Revised version published as JCAP08(2010)01

    321W average power, 1GHz, 20ps 1060nm pulsed fiber MOPA source

    No full text
    Pulses from a gain-switched laser diode were amplified in a fiber MOPA system to produce in excess of 320W of average power in 20ps pulses at 1GHz repetition rate at 1060nm

    Correlated Photons from Collective Excitations of Three-Level Atomic Ensemble

    Full text link
    We systematically study the interaction between two quantized optical fields and a cyclic atomic ensemble driven by a classic optical field. This so-called atomic cyclic ensemble consists of three-level atoms with Delta-type transitions due to the symmetry breaking, which can also be implemented in the superconducting quantum circuit by Yu-xi Liu et al. [Phys. Rev. Lett. 95, 087001 (2005)]. We explore the dynamic mechanisms to creating the quantum entanglements among photon states, and between photons and atomic collective excitations by the coherent manipulation of the atom-photon system. It is shown that the quantum information can be completely transferred from one quantized optical mode to another, and the quantum information carried by the two quantized optical fields can be stored in the collective modes of this atomic ensemble by adiabatically controlling the classic field Rabi frequencies.Comment: 10 pages, 2 figure

    Cluster Model of Decagonal Tilings

    Full text link
    A relaxed version of Gummelt's covering rules for the aperiodic decagon is considered, which produces certain random-tiling-type structures. These structures are precisely characterized, along with their relationships to various other random tiling ensembles. The relaxed covering rule has a natural realization in terms of a vertex cluster in the Penrose pentagon tiling. Using Monte Carlo simulations, it is shown that the structures obtained by maximizing the density of this cluster are the same as those produced by the corresponding covering rules. The entropy density of the covering ensemble is determined using the entropic sampling algorithm. If the model is extended by an additional coupling between neighboring clusters, perfectly ordered structures are obtained, like those produced by Gummelt's perfect covering rules.Comment: 10 pages, 20 figures, RevTeX; minor changes; to be published in Phys. Rev.

    Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton

    Get PDF
    Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountains volcanic field (Montana, USA), derived from the lower lithosphere of the Wyoming craton, can be divided based on textural criteria into tectonite and cumulate groups. The tectonites consist of strongly depleted spinel lherzolites, harzburgites and dunites. Although their mineralogical compositions are generally similar to those of spinel peridotites in off-craton settings, some contain pyroxenes and spinels that have unusually low Al2O3 contents more akin to those found in cratonic spinel peridotites. Furthermore, the tectonite peridotites have whole-rock major element compositions that tend to be significantly more depleted than non-cratonic mantle spinel peridotites (high MgO, low CaO, Al2O3 and TiO2) and resemble those of cratonic mantle. These compositions could have been generated by up to 30% partial melting of an undepleted mantle source. Petrographic evidence suggests that the mantle beneath the Wyoming craton was re-enriched in three ways: (1) by silicate melts that formed mica websterite and clinopyroxenite veins; (2) by growth of phlogopite from K-rich hydrous fluids; (3) by interaction with aqueous fluids to form orthopyroxene porphyroblasts and orthopyroxenite veins. In contrast to their depleted major element compositions, the tectonite peridotites are mostly light rare earth element (LREE)-enriched and show enrichment in fluid-mobile elements such as Cs, Rb, U and Pb on mantle-normalized diagrams. Lack of enrichment in high field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf) suggests that the tectonite peridotites have been metasomatized by a subduction-related fluid. Clinopyroxenes from the tectonite peridotites have distinct U-shaped REE patterns with strong LREE enrichment. They have 143Nd/144Nd values that range from 0·5121 (close to the host minette values) to 0·5107, similar to those of xenoliths from the nearby Highwood Mountains. Foliated mica websterites also have low 143Nd/144Nd values (0·5113) and extremely high 87Sr/86Sr ratios in their constituent phlogopite, indicating an ancient (probably mid-Proterozoic) enrichment. This enriched mantle lithosphere later contributed to the formation of the high-K Eocene host magmas. The cumulate group ranges from clinopyroxene-rich mica peridotites (including abundant mica wehrlites) to mica clinopyroxenites. Most contain >30% phlogopite. Their mineral compositions are similar to those of phenocrysts in the host minettes. Their whole-rock compositions are generally poorer in MgO but richer in incompatible trace elements than those of the tectonite peridotites. Whole-rock trace element patterns are enriched in large ion lithophile elements (LILE; Rb, Cs, U and Pb) and depleted in HFSE (Nb, Ta Zr and Hf) as in the host minettes, and their Sr–Nd isotopic compositions are also identical to those of the minettes. Their clinopyroxenes are LREE-enriched and formed in equilibrium with a LREE-enriched melt closely resembling the minettes. The cumulates therefore represent a much younger magmatic event, related to crystallization at mantle depths of minette magmas in Eocene times, that caused further metasomatic enrichment of the lithosphere
    corecore