2,937 research outputs found
Tuning Locality of Pair Coherence in Graphene-based Andreev Interferometers
We report on gate-tuned locality of superconductivity-induced phase-coherent magnetoconductance oscillations in a graphene-based Andreev interferometer, consisting of a T-shaped graphene bar in contact with a superconducting Al loop. The conductance oscillations arose from the flux change through the superconducting Al loop, with gate-dependent Fraunhofer-type modulation of the envelope. We confirm a transitional change in the character of the pair coherence, between local and nonlocal, in the same device as the effective length-to-width ratio of the device was modulated by tuning the pair-coherence length xi(T) in the graphene layer.open1133sciescopu
Complete gate control of supercurrent in graphene p-n junctions
In a conventional Josephson junction of graphene, the supercurrent is not turned off even at the charge neutrality point, impeding further development of superconducting quantum information devices based on graphene. Here we fabricate bipolar Josephson junctions of graphene, in which a p-n potential barrier is formed in graphene with two closely spaced superconducting contacts, and realize supercurrent ON/OFF states using electrostatic gating only. The bipolar Josephson junctions of graphene also show fully gate-driven macroscopic quantum tunnelling behaviour of Josephson phase particles in a potential well, where the confinement energy is gate tuneable. We suggest that the supercurrent OFF state is mainly caused by a supercurrent dephasing mechanism due to a random pseudomagnetic field generated by ripples in graphene, in sharp contrast to other nanohybrid Josephson junctions. Our study may pave the way for the development of new gate-tuneable superconducting quantum information devices.open114344sciescopu
Continuous and reversible tuning of the disorder-driven superconductor-insulator transition in bilayer graphene
The influence of static disorder on a quantum phase transition (QPT) is a fundamental issue in condensed matter physics. As a prototypical example of a disorder-tuned QPT, the superconductor-insulator transition (SIT) has been investigated intensively over the past three decades, but as yet without a general consensus on its nature. A key element is good control of disorder. Here, we present an experimental study of the SIT based on precise in-situ tuning of disorder in dual-gated bilayer graphene proximity-coupled to two superconducting electrodes through electrical and reversible control of the band gap and the charge carrier density. In the presence of a static disorder potential, Andreev-paired carriers formed close to the Fermi level in bilayer graphene constitute a randomly distributed network of proximity-induced superconducting puddles. The landscape of the network was easily tuned by electrical gating to induce percolative clusters at the onset of superconductivity. This is evidenced by scaling behavior consistent with the classical percolation in transport measurements. At lower temperatures, the solely electrical tuning of the disorder-induced landscape enables us to observe, for the first time, a crossover from classical to quantum percolation in a single device, which elucidates how thermal dephasing engages in separating the two regimes.1132Ysciescopu
Antioxidant, antibacterial and α-glucosidase inhibitory activities of different extracts of Cortex Moutan
Different extracts of Cortex Moutan (CM) were investigated for their antioxidant, antibacterial and α- glucosidase inhibitory activities. The content of paeonol was quantified by high performance liquid chromatography (HPLC). The results show that the yield of acetone extract (57.14%) was significantly higher than those of other solvents. The ethyl-acetate extract exhibited maximum paeonol concentration (60.69 μg/ml), good antibacterial activities (MIC = 100 μg/ml) against Escherichia coli and possessed significant α-glucosidase inhibitory activity. In addition, among all of the extracts, ethylacetate extract demonstrated a high total phenolic value of 127.12 ± 1.42 mg GAE/g, high DPPH radical scavenging activity with an IC50 of 19.88 ± 0.26 μg/ml, and significant reducing power, suggesting that CM is a potential source of natural antioxidants.Key words: Cortex Moutan, antioxidant, 11-diphenyl-2-picrylhydrazyl hydrate (DPPH), reducing power, antibacterial, α-glucosidas
Scalable Purification and Characterization of the Anticancer Lunasin Peptide from Soybean
Lunasin is a peptide derived from the soybean 2S albumin seed protein that has both anticancer and anti-inflammatory activities. Large-scale animal studies and human clinical trials to determine the efficacy of lunasin in vivo have been hampered by the cost of synthetic lunasin and the lack of a method for obtaining gram quantities of highly purified lunasin from plant sources. The goal of this study was to develop a large-scale method to generate highly purified lunasin from defatted soy flour. A scalable method was developed that utilizes the sequential application of anion-exchange chromatography, ultrafiltration, and reversed-phase chromatography. This method generates lunasin preparations of >99% purity with a yield of 442 mg/kg defatted soy flour. Mass spectrometry of the purified lunasin revealed that the peptide is 44 amino acids in length and represents the original published sequence of lunasin with an additional C-terminal asparagine residue. Histone-binding assays demonstrated that the biological activity of the purified lunasin was similar to that of synthetic lunasin. This study provides a robust method for purifying commercial-scale quantities of biologically-active lunasin and clearly identifies the predominant form of lunasin in soy flour. This method will greatly facilitate the development of lunasin as a potential nutraceutical or therapeutic anticancer agent
Influence of ambient water intrusion on coral reef acidification in the Chuuk lagoon, located in the coral-rich western Pacific Ocean
Weekly carbonate chemistry condition data recorded between 2008 and 2014 in the Chuuk lagoon (7.3 degrees N and 151.5 degrees E) of the Federated States of Micronesia, located in the western Pacific Ocean, were analyzed. The results showed that, during periods of weak intrusion of ambient seawater from the surrounding open ocean, two internal biological processes (calcification and respiration) reinforced each other and together lowered the pH of the reef water for extended periods, ranging from a few to several months. The analysis indicated that reduced intrusion of ambient water is associated with periods of low wind speeds. Such conditions increase the residence time of reef water, thus promoting acidification by respiration and calcification. This phenomenon likely affects many other areas of the coral-rich western Pacific Ocean, which contains 50% of global coral reefs and in which the degree of ambient water intrusion into the atolls has been shown to be closely associated with the El Nino-Southern Oscillation-induced wind speed change.1111Ysciescopu
Reduction in CO2 uptake rates of red tide dinoflagellates due to mixotrophy
We investigated a possible reduction in CO2 uptake rate by phototrophic red tide dinoflagellates arising from mixotrophy. We measured the daily ingestion rates of Prorocentrum minimum by Prorocentrum micans over 5 days in 10 L experimentalbottles, and the uptake rates of total dissolved inorganic carbon (CT) by a mixture of P. micans and P. minimum(mixotrophic growth), and for the predator P. micans (phototrophic growth; control) and prey P. minimum (phototrophicgrowth; control) alone. To account for the effect of pH on the phototrophic growth rates of P. micans and P. minimum,measurements of CT and pH in the predator and prey control bottles were continued until the pH reached the same level(pH 9.5) as that in the experimental bottles on the final day of incubation. The measured total CT uptake rate by the mixtureof P. micans and P. minimum changed from 123 to 161 μmol CT kg-1 d-1 over the course of the experiment, and waslower than the CT uptake rates shown by P. micans and P. minimum in the predator and prey control bottles, respectively,which changed from 132 to 176 μmol CT kg-1 d-1 over the course of the experiment. The reduction in total CT uptake ratearising from the mixotrophy of P. micans was 7-31% of the daily CT uptake rate seen during photosynthesis. The resultssuggest that red tide dinoflagellates take up less CT during mixotrophy.1131Ysciescopuskc
Direct Observation of Localized Spin Antiferromagnetic Transition in PdCrO2 by Angle-Resolved Photoemission Spectroscopy
We report the first case of the successful measurements of a localized spin antiferromagnetic transition in delafossite-type PdCrO2 by angle-resolved photoemission spectroscopy (ARPES). This demonstrates how to circumvent the shortcomings of ARPES for investigation of magnetism involved with localized spins in limited size of two-dimensional crystals or multi-layer thin films that neutron scattering can hardly study due to lack of bulk compared to surface. Also, our observations give direct evidence for the spin ordering pattern of Cr3+ ions in PdCrO2 suggested by neutron diffraction and quantum oscillation measurements, and provide a strong constraint that has to be satisfied by a microscopic mechanism for the unconventional anomalous Hall effect recently reported in this system.X1118sciescopu
Ascaroside Expression in Caenorhabditis elegans Is Strongly Dependent on Diet and Developmental Stage
Background:
The ascarosides form a family of small molecules that have been isolated from cultures of the nematode Caenorhabditis elegans. They are often referred to as “dauer pheromones” because most of them induce formation of long-lived and highly stress resistant dauer larvae. More recent studies have shown that ascarosides serve additional functions as social signals and mating pheromones. Thus, ascarosides have multiple functions. Until now, it has been generally assumed that ascarosides are constitutively expressed during nematode development.
Methodology/Principal Findings:
Cultures of C. elegans were developmentally synchronized on controlled diets. Ascarosides released into the media, as well as stored internally, were quantified by LC/MS. We found that ascaroside biosynthesis and release were strongly dependent on developmental stage and diet. The male attracting pheromone was verified to be a blend of at least four ascarosides, and peak production of the two most potent mating pheromone components, ascr#3 and asc#8 immediately preceded or coincided with the temporal window for mating. The concentration of ascr#2 increased under starvation conditions and peaked during dauer formation, strongly supporting ascr#2 as the main population density signal (dauer pheromone). After dauer formation, ascaroside production largely ceased and dauer larvae did not release any ascarosides. These findings show that both total ascaroside production and the relative proportions of individual ascarosides strongly correlate with these compounds' stage-specific biological functions.
Conclusions/Significance:
Ascaroside expression changes with development and environmental conditions. This is consistent with multiple functions of these signaling molecules. Knowledge of such differential regulation will make it possible to associate ascaroside production to gene expression profiles (transcript, protein or enzyme activity) and help to determine genetic pathways that control ascaroside biosynthesis. In conjunction with findings from previous studies, our results show that the pheromone system of C. elegans mimics that of insects in many ways, suggesting that pheromone signaling in C. elegans may exhibit functional homology also at the sensory level. In addition, our results provide a strong foundation for future behavioral modeling studies
Dopamine Regulation of Amygdala Inhibitory Circuits for Expression of Learned Fear.
GABAergic signaling in the amygdala controls learned fear, and its dysfunction potentially contributes to posttraumatic stress disorder (PTSD). We find that sub-threshold fear conditioning leads to dopamine receptor D4-dependent long-term depression (LTD) of glutamatergic excitatory synapses by increasing inhibitory inputs onto neurons of the dorsal intercalated cell mass (ITC) in the amygdala. Pharmacological, genetic, and optogenetic manipulations of the amygdala regions centered on the dorsal ITC reveal that this LTD limits less salient experiences from forming persistent memories. In further support of the idea that LTD has preventive and discriminative roles, we find that LTD at the dorsal ITC is impaired in mice exhibiting PTSD-like behaviors. These findings reveal a novel role of inhibitory circuits in the amygdala, which serves to dampen and restrict the level of fear expression. This mechanism is interfered with by stimuli that give rise to PTSD and may also be recruited for fear-related psychiatric diseases.1110Ysciescopu
- …