17,336 research outputs found

    Dr. Tung H. Jeong One of Five Visiting Speakers

    Get PDF
    News release announcing Dr. Tung H. Jeong, child immigrant from China and associate professor of physics at Lake Forest College, will be one of five guest speaker when the Ohio Section of the American Physical Society meets at the University of Dayton

    The Far-Infrared Properties of Spatially Resolved AKARI Observations

    Full text link
    We present the spatially resolved observations of IRAS sources from the Japanese infrared astronomy satellite AKARI All-Sky Survey during the performance verification (PV) phase of the mission. We extracted reliable point sources matched with IRAS point source catalogue. By comparing IRAS and AKARI fluxes, we found that the flux measurements of some IRAS sources could have been over or underestimated and affected by the local background rather than the global background. We also found possible candidates for new AKARI sources and confirmed that AKARI observations resolved IRAS sources into multiple sources. All-Sky Survey observations are expected to verify the accuracies of IRAS flux measurements and to find new extragalactic point sources.Comment: 11 pages, 7 figures, accepted publication in PASJ AKARI special issu

    Conditional Production of Superpositions of Coherent States with Inefficient Photon Detection

    Get PDF
    It is shown that a linear superposition of two macroscopically distinguishable optical coherent states can be generated using a single photon source and simple all-optical operations. Weak squeezing on a single photon, beam mixing with an auxiliary coherent state, and photon detecting with imperfect threshold detectors are enough to generate a coherent state superposition in a free propagating optical field with a large coherent amplitude (α>2\alpha>2) and high fidelity (F>0.99F>0.99). In contrast to all previous schemes to generate such a state, our scheme does not need photon number resolving measurements nor Kerr-type nonlinear interactions. Furthermore, it is robust to detection inefficiency and exhibits some resilience to photon production inefficiency.Comment: Some important new results added, to appear in Phys.Rev.A (Rapid Communication

    Discussion of Revisiting the Resilience Index for Water Distribution Networks by Gimoon Jeong, Albert Wicaksono, and Doosun Kang

    Full text link
    Cabrera Marcet, E.; Gomez Selles, E.; Del Teso-March, R.; Estruch-Juan, ME. (2019). Discussion of Revisiting the Resilience Index for Water Distribution Networks by Gimoon Jeong, Albert Wicaksono, and Doosun Kang. Journal of Water Resources Planning and Management. 145(1):1-4. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000792S14145

    Comment on ``Solution of Classical Stochastic One-Dimensional Many-Body Systems''

    Full text link
    In a recent Letter, Bares and Mobilia proposed the method to find solutions of the stochastic evolution operator H=H0+ÎłLH1H=H_0 + {\gamma\over L} H_1 with a non-trivial quartic term H1H_1. They claim, ``Because of the conservation of probability, an analog of the Wick theorem applies and all multipoint correlation functions can be computed.'' Using the Wick theorem, they expressed the density correlation functions as solutions of a closed set of integro-differential equations. In this Comment, however, we show that applicability of Wick theorem is restricted to the case Îł=0\gamma = 0 only.Comment: 1 page, revtex style, comment on paper Phys. Rev. Lett. {\bf 83}, 5214 (1999

    A simulation study on the interactive effects of radiation and plant density on growth of cut chrysanthemum

    Get PDF
    In the present study, we used a photosynthesis-driven crop growth model to determine acceptable plant densities for cut chrysanthemum throughout the year at different intensities of supplementary light. Dry matter partitioning between leaves, stems, and flowers was simulated as a function of crop developmental stage. Leaf area index was simulated as leaf dry mass multiplied by specific leaf area, the latter being a function of season. Climatic data (hourly global radiation, greenhouse temperature, and CO2 concentration) and initial organ dry mass were model inputs. Assimilation lights were switched on and off based on time and ambient global radiation intensity. Simulated plant fresh mass with supplementary light (49 µmol m-2 s-1) for 52 cultivations (weekly plantings, reference plant densities, and length of the long and short day period) was used as reference plant fresh mass. For four other supplementary light intensities (31, 67, 85, and 104 µmol m-2 s-1), dry matter production was simulated with the reference plant density and length of the long and short day period for each planting week and plant fresh mass was calculated. The acceptable plant density was then calculated as the ratio between plant fresh mass and reference plant fresh mass multiplied by the reference density. Under low natural light intensities, plant density could be increased substantially (>30%) at increased supplementary light intensities, while maintaining the desired plant mass. Simulated light use efficiency (g additional dry mass ¿ MJ-1 additional supplementary light) was higher in winter (4.7) than in summer (3.5), whereas it hardly differed between the supplementary light intensities. This type of simulations can be used to support decisions on the acceptable level of plant density at different intensities of supplementary lighting or lighting strategies and on optimum supplementary light intensities
    • …
    corecore