2,178 research outputs found

    Effect of Intervention Programs for Improving Maternal Adaptation in Korea: Systematic Review

    Get PDF
    PURPOSE: The purpose of this study was to determine the current state of nursing intervention for maternal adaptation and its' effectiveness in Korea by utilizing a systematic review. METHODS: The PICO(Population-Intervention-Compar ator-Outcome) strategy was established, and 1,720 pieces of literature published during the last ten-year period from four electronic databases were reviewed. Eighteen references that met inclusion and exclusion criteria were finally selected for systematic review. The quality of references using critical appraisal checklist for experimental studies were evaluated, and then systematic review and meta-analysis were conducted. RESULTS: All 18 references were quasi-experimental research design. Most interventions were provided at the hospital and postpartum care center. Maternal adaptation interventions appeared to be of many types, and particularly maternal role education programs were the most common. Confidence in maternal role was used as the most common variable for the maternal adaptati on. Various interventions for helping maternal adaptation in the postnatal period improved maternal confidence, moth er-infant attachment, maternal satisfaction and mother-infant interaction effectively. CONCLUSION: A diversity of nursin g interventions in postnatal period improved various aspects of maternal adaptation. Randomized controlled trials and longitudinal studies are needed in order to verify the effect of interventions for maternal adaptation more clearly

    Multiple Functions of Nm23-H1 Are Regulated by Oxido-Reduction System

    Get PDF
    Nucleoside diphosphate kinase (NDPK, Nm23), a housekeeping enzyme, is known to be a multifunctional protein, acting as a metastasis suppressor, transactivation activity on c-myc, and regulating endocytosis. The cellular mechanisms regulating Nm23 functions are poorly understood. In this study, we identified the modifications and interacting proteins of Nm23-H1 in response to oxidative stress. We found that Cys109 in Nm23-H1 is oxidized to various oxidation states including intra- and inter-disulfide crosslinks, glutathionylation, and sulfonic acid formation in response to H2O2 treatment both in vivo and in vitro. The cross-linking sites and modifications of oxidized Nm23-H1 were identified by peptide sequencing using UPLC-ESI-q-TOF tandem MS. Glutathionylation and oxidation of Cys109 inhibited the NDPK enzymatic activity of Nm23-H1. We also found that thioredoxin reductase 1 (TrxR1) is an interacting protein of Nm23-H1, and it binds specifically to oxidized Nm23-H1. Oxidized Nm23 is a substrate of NADPH-TrxR1-thioredoxin shuttle system, and the disulfide crosslinking is reversibly reduced and the enzymatic activity is recovered by this system. Oxidation of Cys109 in Nm23-H1 inhibited its metastatic suppressor activity as well as the enzymatic activities. The mutant, Nm23-H1 C109A, retained both the enzymatic and metastasis suppressor activities under oxidative stress. This suggests that key enzymatic and metastasis suppressor functions of Nm23-H1 are regulated by oxido-reduction of its Cys109

    β-Lapachone Significantly Increases the Effect of Ionizing Radiation to Cause Mitochondrial Apoptosis via JNK Activation in Cancer Cells

    Get PDF
    β-lapachone (β-lap), has been known to cause NQO1-dependnet death in cancer cells and sensitize cancer cells to ionizing radiation (IR). We investigated the mechanisms underlying the radiosensitization caused by β-lap. cells induced ROS generation, triggered ER stress and stimulated activation of ERK and JNK. Inhibition of ROS generation by NAC effectively attenuated the activation of ERK and JNK, induction of ER stress, and subsequent apoptosis. Importantly, inhibition of ERK abolished ROS generation and ER stress, whereas inhibition of JNK did not, indicating that positive feedback regulation between ERK activation and ROS generation triggers ER stress in response to combined treatment. Furthermore, prevention of ER stress completely blocked combination treatment-induced JNK activation and subsequent apoptotic cell death. In addition, combined treatment efficiently induced the mitochondrial translocation of cleaved Bax, disrupted mitochondrial membrane potential, and the nuclear translocation of AIF, all of which were efficiently blocked by a JNK inhibitor. Caspases 3, 8 and 9 were activated by combined treatment but inhibition of these caspases did not abolish apoptosis indicating caspase activation played a minor role in the induction of apoptosis. cells are treated with combination of IR and β-lap, positive feedback regulation between ERK and ROS leads to ER stress causing JNK activation and mitochondrial translocation of cleaved Bax. The resultant decrease in mitochondrial membrane leads to translocation of AIF and apoptosis

    Bloody nipple discharge in an infant

    Get PDF
    Although milky nipple discharge appears frequently in infants, bloody nipple discharge is a very rare finding. We experienced a 4-month-old, breast-fed infant who showed bilateral bloody nipple discharge with no signs of infection, engorgement, or hypertrophy. The infant's hormonal examination and coagulation tests were normal, and an ultrasound examination revealed mammary duct ectasia. The symptoms resolved spontaneously within 6 weeks without any specific treatment, except that we advised the mother to refrain from taking herbal medicine. Since no such case has been previously reported in Korea, we present this case with a brief review of the literature

    Serial I-123-FP-CIT SPECT Image Findings of Parkinson's Disease Patients With Levodopa-Induced Dyskinesia

    Get PDF
    Background: Levodopa-induced dyskinesia (LID) is a major complication of dopamine replacement drug usage in Parkinson's disease (PD) patients. Since the mechanism of LID is yet unclear, we analyzed serial [I-123] N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) nortropane (I-123 FP-CIT) single photon emission computed tomography (SPECT) images. We investigated the changes of dopaminergic innervation during the progression of PD in relation to the development of LID.Methods: Data were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. Two hundred and ninety PD dopamine replacement drug-naïve patients (age 61.0 ± 9.7, M: F = 195: 95) were enrolled. I-123 FP-CIT SPECT images from baseline, 12, 24, and 48 months were analyzed among with clinical factors. specific binding ratios (SBRs) of the striatal regions from I-123 FP-CIT SPECT images were analyzed. We used independent tests and logistic regression for analysis of LID risk association.Results: Among 290 patients, 36 patients developed LID after 48 months follow-up. Baseline MDS-UPDRS Part II and III scores were significantly higher in the PD patients with LID, compared with the PD patients without LID. Striatal SBRs were significantly lower in the PD patients with LID at baseline, 24 and 48 months (p < 0.001). Multivariate analysis revealed MDS-UPDRS Part II and putaminal SBRs at baseline and 24 months to be significantly associated with the development of LID (p < 0.001). Also, patients who developed LID at 48 months had a higher decrease rate of putaminal SBR at the 24 months (p < 0.05), and 48 months (p < 0.01) period.Conclusion: In this study, we demonstrated the serial changes of the nigrostriatal dopaminergic innervation in relationship to LID development for the first time. The deterioration rate of dopaminergic innervation was significantly higher in the PD patients who developed LID, compared with the PD patients who did not develop LID. Serial follow up I-123 FP-CIT SPECT acquisition during the course of PD could be helpful in predicting the development of LID

    Nexus between directionality of THz waves and structural parameters in groove-patterned InAs

    Full text link
    We have performed terahertz (THz)-time domain spectroscopy in various geometries, for characterizing the directivity of THz waves emitted from groove-patterned InAs structures. First, we have distinguished the THz emission mechanisms as a function of epilayer thickness. The carrier drift was predominant in thin sample group (10-70 nm) which the electronic diffusion motion was overriding the oppositely aligned drifting dipoles in thick sample group (370-900 nm) as revealed via amplitude and phase variations. By combined use of the electron-beam lithography and the inductively coupled plasma etching in 1 {\mu}m-thick InAs epilayers, we have further fabricated either asymmetric V-groove patterns or symmetric parabolic patterns. The THz amplitude was enhanced, particularly along line-of-sight transmissive direction when the groove patterns act as microscale reflective mirrors periodically separated by a scale of diffusion length.Comment: 5 pages, 4 figure

    Potential role and mechanism of IFN-gamma inducible protein-10 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in rheumatoid arthritis

    Get PDF
    Introduction IFN-gamma inducible protein-10 (CXCL10), a member of the CXC chemokine family, and its receptor CXCR3 contribute to the recruitment of T cells from the blood stream into the inflamed joints and have a crucial role in perpetuating inflammation in rheumatoid arthritis (RA) synovial joints. Recently we showed the role of CXCL10 on receptor activator of nuclear factor kappa-B ligand (RANKL) expression in an animal model of RA and suggested the contribution to osteoclastogenesis. We tested the effects of CXCL10 on the expression of RANKL in RA synoviocytes and T cells, and we investigated which subunit of CXCR3 contributes to RANKL expression by CXCL10. Methods Synoviocytes derived from RA patients were kept in culture for 24 hours in the presence or absence of TNF-α. CXCL10 expression was measured by reverse transcriptase polymerase chain reaction (RT-PCR) of cultured synoviocytes. Expression of RANKL was measured by RT-PCR and western blot in cultured synoviocytes with or without CXCL10 and also measured in Jurkat/Hut 78 T cells and CD4+ T cells in the presence of CXCL10 or dexamethasone. CXCL10 induced RANKL expression in Jurkat T cells was tested upon the pertussis toxin (PTX), an inhibitor of Gi subunit of G protein coupled receptor (GPCR). The synthetic siRNA for Gαi2 was used to knock down gene expression of respective proteins. Results CXCL10 expression in RA synoviocytes was increased by TNF-α. CXCL10 slightly increased RANKL expression in RA synoviocytes, but markedly increased RANKL expression in Jurkat/Hut 78 T cell or CD4+ T cell. CXCL10 augmented the expression of RANKL by 62.6%, and PTX inhibited both basal level of RANKL (from 37.4 ± 16.0 to 18.9 ± 13.0%) and CXCL10-induced RANKL expression in Jurkat T cells (from 100% to 48.6 ± 27.3%). Knock down of Gαi2 by siRNA transfection, which suppressed the basal level of RANKL (from 61.8 ± 17.9% to 31.1 ± 15.9%) and CXCL10-induced RANKL expression (from 100% to 53.1 ± 27.1%) in Jurkat T cells, is consistent with PTX, which inhibited RANKL expression. Conclusions CXCL10 increased RANKL expression in CD4+ T cells and it was mediated by Gαi subunits of CXCR3. These results indicate that CXCL10 may have a potential role in osteoclastogenesis of RA synovial tissue and subsequent joint erosion

    Time-resolved pathogenic gene expression analysis of the plant pathogen Xanthomonas oryzae pv. oryzae

    Get PDF
    Virulence of wild-type and mutant Xoo strains on rice. (DOCX 16 kb
    corecore