8,966 research outputs found
Practical purification scheme for decohered coherent-state superpositions via partial homodyne detection
We present a simple protocol to purify a coherent-state superposition that
has undergone a linear lossy channel. The scheme constitutes only a single beam
splitter and a homodyne detector, and thus is experimentally feasible. In
practice, a superposition of coherent states is transformed into a classical
mixture of coherent states by linear loss, which is usually the dominant
decoherence mechanism in optical systems. We also address the possibility of
producing a larger amplitude superposition state from decohered states, and
show that in most cases the decoherence of the states are amplified along with
the amplitude.Comment: 8 pages, 10 figure
Determination of confusion noise for far-infrared measurements
We present a detailed assessment of the far-infrared confusion noise imposed
on measurements with the ISOPHOT far-infrared detectors and cameras aboard the
ISO satellite. We provide confusion noise values for all measurement
configurations and observing modes of ISOPHOT in the 90<=lambda<=200um
wavelength range. Based on these results we also give estimates for cirrus
confusion noise levels at the resolution limits of current and future
instruments of infrared space telescopes: Spitzer/MIPS, ASTRO-F/FIS and
Herschel/PACS.Comment: A&A accepted; FITS files and appendices are available at:
http://www.konkoly.hu/staff/pkisscs/confnoise
Spin Qubits in Multi-Electron Quantum Dots
We study the effect of mesoscopic fluctuations on the magnitude of errors
that can occur in exchange operations on quantum dot spin-qubits. Mid-size
double quantum dots, with an odd number of electrons in the range of a few tens
in each dot, are investigated through the constant interaction model using
realistic parameters. It is found that the constraint of having short pulses
and small errors implies keeping accurate control, at the few percent level, of
several electrode voltages. In practice, the number of independent parameters
per dot that one should tune depends on the configuration and ranges from one
to four.Comment: RevTex, 6 pages, 5 figures. v3: two figures added, more details
provided. Accepted for publication in PR
Singlet-doublet Higgs mixing and its implications on the Higgs mass in the PQ-NMSSM
We examine the implications of singlet-doublet Higgs mixing on the properties
of a Standard Model (SM)-like Higgs boson within the Peccei-Quinn invariant
extension of the NMSSM (PQ-NMSSM). The SM singlet added to the Higgs sector
connects the PQ and visible sectors through a PQ-invariant non-renormalizable
K\"ahler potential term, making the model free from the tadpole and domain-wall
problems. For the case that the lightest Higgs boson is dominated by the
singlet scalar, the Higgs mixing increases the mass of a SM-like Higgs boson
while reducing its signal rate at collider experiments compared to the SM case.
The Higgs mixing is important also in the region of parameter space where the
NMSSM contribution to the Higgs mass is small, but its size is limited by the
experimental constraints on the singlet-like Higgs boson and on the lightest
neutralino constituted mainly by the singlino whose Majorana mass term is
forbidden by the PQ symmetry. Nonetheless the Higgs mixing can increase the
SM-like Higgs boson mass by a few GeV or more even when the Higgs signal rate
is close to the SM prediction, and thus may be crucial for achieving a 125 GeV
Higgs mass, as hinted by the recent ATLAS and CMS data. Such an effect can
reduce the role of stop mixing.Comment: 26 pages, 3 figures; published in JHE
Inflation and the Scale Dependent Spectral Index: Prospects and Strategies
We consider the running of the spectral index as a probe of both inflation
itself, and of the overall evolution of the very early universe. Surveying a
collection of simple single field inflationary models, we confirm that the
magnitude of the running is relatively consistent, unlike the tensor amplitude,
which varies by orders of magnitude. Given this target, we confirm that the
running is potentially detectable by future large scale structure or 21 cm
observations, but that only the most futuristic measurements can distinguish
between these models on the basis of their running. For any specified
inflationary scenario, the combination of the running index and unknown
post-inflationary expansion history induces a theoretical uncertainty in the
predicted value of the spectral index. This effect can easily dominate the
statistical uncertainty with which Planck and its successors are expected to
measure the spectral index. More positively, upcoming cosmological experiments
thus provide an intriguing probe of physics between TeV and GUT scales by
constraining the reheating history associated with any specified inflationary
model, opening a window into the "primordial dark age" that follows the end of
inflation.Comment: 32 pages. v2 and v3 Minor reference updates /clarification
Hardness of porous nanocrystalline Co-Ni electrodeposits
The Hall-Petch relationship can fail when the grain size is below a critical value of tens of nanometres. This occurs particularly for coatings having porous surfaces. In this study, electrodeposited nanostructured Co-Ni coatings from four different nickel electroplating baths having grain sizes in the range of 11-23 nm have been investigated. The finest grain size, approximately 11 nm, was obtained from a coating developed from the nickel sulphate bath. The Co-Ni coatings have a mixed face centred cubic and hexagonal close-packed structures with varying surface morphologies and different porosities. A cluster-pore mixture model has been proposed by considering no contribution from pores to the hardness. As the porosity effect was taken into consideration, the calculated pore-free hardness is in agreement with the ordinary Hall-Petch relationship even when the grain size is reduced to 11 nm for the Co-Ni coatings with 77±2 at% cobalt. The present model was applied to other porous nanocrystalline coatings, and the Hall-Petch relationship was maintained. © 2013 The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht. © KIM and Springer
Finding and evaluating community structure in networks
We propose and study a set of algorithms for discovering community structure
in networks -- natural divisions of network nodes into densely connected
subgroups. Our algorithms all share two definitive features: first, they
involve iterative removal of edges from the network to split it into
communities, the edges removed being identified using one of a number of
possible "betweenness" measures, and second, these measures are, crucially,
recalculated after each removal. We also propose a measure for the strength of
the community structure found by our algorithms, which gives us an objective
metric for choosing the number of communities into which a network should be
divided. We demonstrate that our algorithms are highly effective at discovering
community structure in both computer-generated and real-world network data, and
show how they can be used to shed light on the sometimes dauntingly complex
structure of networked systems.Comment: 16 pages, 13 figure
Generation of entangled coherent states via cross phase modulation in a double electromagnetically induced transparency regime
The generation of an entangled coherent state is one of the most important
ingredients of quantum information processing using coherent states. Recently,
numerous schemes to achieve this task have been proposed. In order to generate
travelling-wave entangled coherent states, cross phase modulation, optimized by
optical Kerr effect enhancement in a dense medium in an electromagnetically
induced transparency (EIT) regime, seems to be very promising. In this
scenario, we propose a fully quantized model of a double-EIT scheme recently
proposed [D. Petrosyan and G. Kurizki, {\sl Phys. Rev. A} {\bf 65}, 33833
(2002)]: the quantization step is performed adopting a fully Hamiltonian
approach. This allows us to write effective equations of motion for two
interacting quantum fields of light that show how the dynamics of one field
depends on the photon-number operator of the other. The preparation of a
Schr\"odinger cat state, which is a superposition of two distinct coherent
states, is briefly exposed. This is based on non-linear interaction via
double-EIT of two light fields (initially prepared in coherent states) and on a
detection step performed using a beam splitter and two photodetectors.
In order to show the entanglement of a generated entangled coherent state, we
suggest to measure the joint quadrature variance of the field. We show that the
entangled coherent states satisfy the sufficient condition for entanglement
based on quadrature variance measurement. We also show how robust our scheme is
against a low detection efficiency of homodyne detectors.Comment: 15 pages, 9 figures; extensively revised version; added Section
Constraining primordial non-Gaussianity with cosmological weak lensing: shear and flexion
We examine the cosmological constraining power of future large-scale weak
lensing surveys on the model of \emph{Euclid}, with particular reference to
primordial non-Gaussianity. Our analysis considers several different estimators
of the projected matter power spectrum, based on both shear and flexion, for
which we review the covariances and Fisher matrices. The bounds provided by
cosmic shear alone for the local bispectrum shape, marginalized over
, are at the level of . We consider
three additional bispectrum shapes, for which the cosmic shear constraints
range from (equilateral shape) up to (orthogonal shape). The competitiveness of cosmic
flexion constraints against cosmic shear ones depends on the galaxy intrinsic
flexion noise, that is still virtually unconstrained. Adopting the very high
value that has been occasionally used in the literature results in the flexion
contribution being basically negligible with respect to the shear one, and for
realistic configurations the former does not improve significantly the
constraining power of the latter. Since the flexion noise decreases with
decreasing scale, by extending the analysis up to
cosmic flexion, while being still subdominant, improves the shear constraints
by when added. However on such small scales the highly non-linear
clustering of matter and the impact of baryonic physics make any error
estimation uncertain. By considering lower, and possibly more realistic, values
of the flexion intrinsic shape noise results in flexion constraining power
being a factor of better than that of shear, and the bounds on
and being improved by a factor of upon
their combination. (abridged)Comment: 30 pages, 4 figures, 4 tables. To appear on JCA
- …
