18,338 research outputs found

    Review of economic evidence in the prevention and early detection of colorectal cancer.

    Get PDF
    This paper aims to systematically review the cost-effectiveness evidence, and to provide a critical appraisal of the methods used in the model-based economic evaluation of CRC screening and subsequent surveillance. A search strategy was developed to capture relevant evidence published 1999-November 2012. Databases searched were MEDLINE, EMBASE, National Health Service Economic Evaluation (NHS EED), EconLit, and HTA. Full economic evaluations that considered costs and health outcomes of relevant intervention were included. Sixty-eight studies which used either cohort simulation or individual-level simulation were included. Follow-up strategies were mostly embedded in the screening model. Approximately 195 comparisons were made across different modalities; however, strategies modelled were often simplified due to insufficient evidence and comparators chosen insufficiently reflected current practice/recommendations. Studies used up-to-date evidence on the diagnostic test performance combined with outdated information on CRC treatments. Quality of life relating to follow-up surveillance is rare. Quality of life relating to CRC disease states was largely taken from a single study. Some studies omitted to say how identified adenomas or CRC were managed. Besides deterministic sensitivity analysis, probabilistic sensitivity analysis (PSA) was undertaken in some studies, but the distributions used for PSA were rarely reported or justified. The cost-effectiveness of follow-up strategies among people with confirmed adenomas are warranted in aiding evidence-informed decision making in response to the rapidly evolving technologies and rising expectations

    Universal Correction of Density Functional Theory to Include London Dispersion (up to Lr, Element 103)

    Get PDF
    Conventional density functional theory (DFT) fails to describe accurately the London dispersion essential for describing molecular interactions in soft matter (biological systems, polymers, nucleic acids) and molecular crystals. This has led to several methods in which atom-dependent potentials are added into the Kohn–Sham DFT energy. Some of these corrections were fitted to accurate quantum mechanical results, but it will be tedious to determine the appropriate parameters to describe all of the atoms of the periodic table. We propose an alternative approach in which a single parameter in the low-gradient (lg) functional form is combined with the rule-based UFF (universal force-field) nonbond parameters developed for the entire periodic table (up to Lr, Z = 103), named as a DFT-ulg method. We show that DFT-ulg method leads to a very accurate description of the properties for molecular complexes and molecular crystals, providing the means for predicting more accurate weak interactions across the periodic table

    The structure of gauge-invariant ideals of labelled graph Cβˆ—C^*-algebras

    Full text link
    In this paper, we consider the gauge-invariant ideal structure of a Cβˆ—C^*-algebra Cβˆ—(E,L,B)C^*(E,\mathcal{L},\mathcal{B}) associated to a set-finite, receiver set-finite and weakly left-resolving labelled space (E,L,B)(E,\mathcal{L},\mathcal{B}), where L\mathcal{L} is a labelling map assigning an alphabet to each edge of the directed graph EE with no sinks. Under the assumption that an accommodating set B\mathcal{B} is closed under taking relative complement, it is obtained that there is a one to one correspondence between the set of all hereditary saturated subsets of B\mathcal{B} and the gauge-invariant ideals of Cβˆ—(E,L,B)C^*(E,\mathcal{L},\mathcal{B}). For this, we introduce a quotient labelled space (E,L,[B]R)(E,\mathcal{L},[\mathcal{B}]_R) arising from an equivalence relation ∼R\sim_R on B\mathcal{B} and show the existence of the Cβˆ—C^*-algebra Cβˆ—(E,L,[B]R)C^*(E,\mathcal{L},[\mathcal{B}]_R) generated by a universal representation of (E,L,[B]R)(E,\mathcal{L},[\mathcal{B}]_R). Also the gauge-invariant uniqueness theorem for Cβˆ—(E,L,[B]R)C^*(E,\mathcal{L},[\mathcal{B}]_R) is obtained. For simple labelled graph Cβˆ—C^*-algebras Cβˆ—(E,L,EΛ‰)C^*(E,\mathcal{L},\bar{\mathcal{E}}), where EΛ‰\bar{\mathcal{E}} is the smallest accommodating set containing all the generalized vertices, it is observed that if for each vertex vv of EE, a generalized vertex [v]l[v]_l is finite for some ll, then Cβˆ—(E,L,EΛ‰)C^*(E,\mathcal{L},\bar{\mathcal{E}}) is simple if and only if (E,L,EΛ‰)(E,\mathcal{L},\bar{\mathcal{E}}) is strongly cofinal and disagreeable. This is done by examining the merged labelled graph (F,LF)(F,\mathcal{L}_F) of (E,L)(E,\mathcal{L}) and the common properties that Cβˆ—(E,L,EΛ‰)C^*(E,\mathcal{L},\bar{\mathcal{E}}) and Cβˆ—(F,L,FΛ‰)C^*(F,\mathcal{L},\bar{\mathcal{F}}) share

    Conditional Production of Superpositions of Coherent States with Inefficient Photon Detection

    Get PDF
    It is shown that a linear superposition of two macroscopically distinguishable optical coherent states can be generated using a single photon source and simple all-optical operations. Weak squeezing on a single photon, beam mixing with an auxiliary coherent state, and photon detecting with imperfect threshold detectors are enough to generate a coherent state superposition in a free propagating optical field with a large coherent amplitude (Ξ±>2\alpha>2) and high fidelity (F>0.99F>0.99). In contrast to all previous schemes to generate such a state, our scheme does not need photon number resolving measurements nor Kerr-type nonlinear interactions. Furthermore, it is robust to detection inefficiency and exhibits some resilience to photon production inefficiency.Comment: Some important new results added, to appear in Phys.Rev.A (Rapid Communication

    Directed polymers in random media under confining force

    Full text link
    The scaling behavior of a directed polymer in a two-dimensional (2D) random potential under confining force is investigated. The energy of a polymer with configuration {y(x)}\{y(x)\} is given by H\big(\{y(x)\}\big) = \sum_{x=1}^N \exyx + \epsilon \Wa^\alpha, where Ξ·(x,y)\eta(x,y) is an uncorrelated random potential and \Wa is the width of the polymer. Using an energy argument, it is conjectured that the radius of gyration Rg(N)R_g(N) and the energy fluctuation Ξ”E(N)\Delta E(N) of the polymer of length NN in the ground state increase as Rg(N)∼NΞ½R_g(N)\sim N^{\nu} and Ξ”E(N)∼NΟ‰\Delta E(N)\sim N^\omega respectively with Ξ½=1/(1+Ξ±)\nu = 1/(1+\alpha) and Ο‰=(1+2Ξ±)/(4+4Ξ±)\omega = (1+2\alpha)/(4+4\alpha) for Ξ±β‰₯1/2\alpha\ge 1/2. A novel algorithm of finding the exact ground state, with the effective time complexity of \cO(N^3), is introduced and used to confirm the conjecture numerically.Comment: 9 pages, 7 figure

    Propofol Induction Reduces the Capacity for Neural Information Integration: Implications for the Mechanism of Consciousness and General Anesthesia

    Get PDF
    The cognitive unbinding paradigm suggests that the synthesis of cognitive information is attenuated by general anesthesia. Here, we investigated the functional organization of brain activities in the conscious and anesthetized states, based on characteristic functional segregation and integration of electroencephalography (EEG). EEG recordings were obtained from 14 subjects undergoing induction of general anesthesia with propofol. We quantified changes in mean information integration capacity in each band of the EEG. After induction with propofol, mean information integration capacity was reduced most prominently in the gamma band of the EEG (p=0.0001). Furthermore, we demonstrate that loss of consciousness is reflected by the breakdown of the spatiotemporal organization of gamma waves. Induction of general anesthesia with propofol reduces the capacity for information integration in the brain. These data directly support the information integration theory of consciousness and the cognitive unbinding paradigm of general anesthesia

    Optimal Schedules in Multitask Motor Learning

    Get PDF
    Although scheduling multiple tasks in motor learning to maximize long-term retention of performance is of great practical importance in sports training and motor rehabilitation after brain injury, it is unclear how to do so. We propose here a novel theoretical approach that uses optimal control theory and computational models of motor adaptation to determine schedules that maximize long-term retention predictively. Using Pontryagin’s maximum principle, we derived a control law that determines the trial-by-trial task choice that maximizes overall delayed retention for all tasks, as predicted by the state-space model. Simulations of a single session of adaptation with two tasks show that when task interference is high, there exists a threshold in relative task difficulty below which the alternating schedule is optimal. Only for large differences in task difficulties do optimal schedules assign more trials to the harder task. However, over the parameter range tested, alternating schedules yield long-term retention performance that is only slightly inferior to performance given by the true optimal schedules. Our results thus predict that in a large number of learning situations wherein tasks interfere, intermixing tasks with an equal number of trials is an effective strategy in enhancing long-term retention

    Unified entropy, entanglement measures and monogamy of multi-party entanglement

    Full text link
    We show that restricted shareability of multi-qubit entanglement can be fully characterized by unified-(q,s)(q,s) entropy. We provide a two-parameter class of bipartite entanglement measures, namely unified-(q,s)(q,s) entanglement with its analytic formula in two-qubit systems for qβ‰₯1q\geq 1, 0≀s≀10\leq s \leq1 and qs≀3qs\leq3. Using unified-(q,s)(q,s) entanglement, we establish a broad class of the monogamy inequalities of multi-qubit entanglement for qβ‰₯2q\geq2, 0≀s≀10\leq s \leq1 and qs≀3qs\leq3.Comment: 17 pages, 1 figur
    • …
    corecore