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Although scheduling multiple tasks in motor learning to maximize long-
term retention of performance is of great practical importance in sports
training and motor rehabilitation after brain injury, it is unclear how to do
so. We propose here a novel theoretical approach that uses optimal con-
trol theory and computational models of motor adaptation to determine
schedules that maximize long-term retention predictively. Using Pon-
tryagin’s maximum principle, we derived a control law that determines
the trial-by-trial task choice that maximizes overall delayed retention for
all tasks, as predicted by the state-space model. Simulations of a single
session of adaptation with two tasks show that when task interference
is high, there exists a threshold in relative task difficulty below which
the alternating schedule is optimal. Only for large differences in task
difficulties do optimal schedules assign more trials to the harder task.
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However, over the parameter range tested, alternating schedules yield
long-term retention performance that is only slightly inferior to perfor-
mance given by the true optimal schedules. Our results thus predict that
in a large number of learning situations wherein tasks interfere, inter-
mixing tasks with an equal number of trials is an effective strategy in
enhancing long-term retention.

1 Introduction

The need for effective scheduling of multiple motor tasks is ubiquitous in
activities such as sports, music, professional skill development, and mo-
tor rehabilitation after brain injury However how should the coach or the
therapist schedule multiple tasks? Let us consider the case in which two
tasks need to be practiced in a single session. Given the negatively accel-
erated shape of performance improvement as a function of practice (Liu,
Mayer-Kress, & Newell, 2003), a simple possibility would be to practice
one task until it reaches some performance criterion and then practice the
other task. There is robust evidence however, that such blocked schedules
are detrimental to long-term retention (Schmidt & Lee, 2005). In contrast,
intermixing the two tasks reduces initial learning speed but enhances long-
term retention (Schmidt & Lee, 2005; Schweighofer et al., 2011). But if one
task is more difficult than the other (we will propose an operationalized
definition of difficulty below, but let us assume for the moment that dif-
ficulty is measured by the initial rate of change in performance) or if the
learner has prior experience with one of the two tasks, trial-by-trial gains
in the easier task will soon plateau. This “labor in vain” will possibly yield
overall poorer retention because of insufficient training on the second task.
The more difficult task should therefore receive a greater number of trials.
However, adding trials to one task will increase the length of trial blocks for
this task, and such blocked schedules may decrease long-term retention.

How, then, can we resolve the conundrum of increasing the number of
trials for the more difficult task while also minimizing the deleterious effect
of long blocks of same-task trials that must inevitably arise in the schedule?
One possibility is to select the task at each trial based on predicted perfor-
mance on the next trials (see Huang, Shadmehr, & Diedrichsen, 2008; Simon,
Cullen, & Lee, 2002). Unfortunately, current performance is known to be a
poor predictor of long-term retention (Joiner & Smith, 2008). Task selection
must therefore be based on long-term retention. We previously showed that
adaptive schedules based on performance measured on delayed-retention
tests substantially improves learning compared to scheduling based on cur-
rent performance (Choi, Qi, Gordon, & Schweighofer, 2008). In that previous
study, however, scheduling was based on heuristics and was determined
“postdictively,” that is, after performance on long-term retention test was
available. To further enhance retention, it would thus be desirable to sched-
ule the tasks predictively—early in training and without the need to wait
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for long-term retention data to be available. Determining such schedules
must therefore be based on predictions of long-term retention generated by
computational models of motor memory.

Here, because of the availability of sound computational models, we use
motor adaptation as a proxy for motor learning. Motor adaptation is defined
as changes in motor performance that allow the motor system to regain
its former capabilities in altered circumstances. Previous computational
models suggest that motor adaptation occurs at multiple timescales. In the
two-state model (Smith, Ghazizadeh, & Shadmehr, 2006), a fast learning
process (FLP) contributes to fast initial learning but also forgets quickly.
A slow learning process (SLP) contributes to long-term retention (Joiner &
Smith, 2008) but learns slowly. Each process has a single state to store the
accumulated adaptation. Such two-state models cannot explain dual- or
multiple-task adaptation, however, because sufficient adaptation to a new
task overrides adaptation of a previous task. When given contextual cues
and sufficient trials, humans can simultaneously adapt to two visuomo-
tor rotations (Choi et al., 2008; Imamizu et al., 2007; Lee & Schweighofer,
2009), two saccadic gains (Shelhamer, Aboukhalil, & Clendaniel, 2005), and
in some conditions two opposite force fields (Hirashima & Nozaki, 2012;
Osu, Hirai, Yoshioka, & Kawato, 2004). The MOdular Selection And Iden-
tification for Control (MOSAIC) model (Wolpert & Kawato, 1998) naturally
accounts for dual or multiple adaptations, via nonlinear switching among
multiple parallel internal models based on “responsibility signals,” which
estimate the extent to which each model should act to capture the behavior
in the current situational context. The responsibility signals have the prop-
erty that they lie between 0 and 1, and their sum over the models is exactly
1. In previous work (Lee & Schweighofer, 2009), we proposed a model with
a fast process that contains a single state arranged in parallel with multiple
slow processes switched by contextual cues. We now extend that model to
include responsibility signals that control learning within multiple adaptive
systems.

Computational models of motor adaptation allow us to predict long-
term retention performance for a task given a specific training schedule
and therefore enable us to compare the effectiveness of different schedules.
How then can we find schedules that maximize long-term retention? A
naıve approach would be to select the best schedule after comparison of all
possible schedules. This approach becomes rapidly intractable, however,
as the number of trials grows. For instance, for 2 tasks and 100 total trials,
the number of possible schedules is 2100 > 1030. Even if we could evaluate
1 billion schedules per second, finding the optimal schedule would take
longer than a thousand times the age of the universe! Thus, a brute-force
search is clearly impossible for schedules longer than short schedules.

Here, we propose a novel theoretical and computationally tractable
method to determine training schedules that maximizes long-term reten-
tion. Our method uses a combined approach of computational models of
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motor adaptation and optimal control theory. Optimal control theory deals
with the problem of finding a control law for a given system to achieve an
optimality criterion. In our example of single-session adaptation training
for two tasks, the optimality criterion is to maximize the predicted slow pro-
cesses of both tasks at the end of training (we made this choice because the
slow process, but not the fast process or the overall level of adaptation, cor-
relates with long-term retention; Joiner & Smith, 2008). The optimal control
law then determines the choice of the task to be presented at every trial. We
validate our method in simulations of a single session of adaptation with
two tasks, with various lengths of training, and with various relative task
difficulty levels. We compared the results with those of a genetic algorithm
(GA) optimization method and, for the specific case of a small schedule
with 20 trials, with those of a brute-force search.

2 Materials and Methods

The purpose of this study is to combine computational models of motor
adaptation and analysis techniques from optimal control theory to identify
multitask training schedules that maximize long-term retention of learning.
In this section, we first describe possible models of motor adaptation and a
formulation of the problem to be solved, then the optimal control method
to determine the schedules, and finally our simulation setup. Note that
while the approach we describe is not tied to any particular computational
model, the models of adaptation dynamics used here are linear with respect
to trials (i.e., discretized time; see Scheidt, Dingwell, & Mussa-Ivaldi, 2001;
Judkins & Scheidt, 2014).

2.1 Modeling Multitask Motor Learning. Whereas the conceptual
MOSAIC model of Wolpert and Kawato (1998) accounts for multiple adap-
tations by switching among multiple parallel and independent internal
models (see the related multiple parallel model in Figure 1A), experimen-
tal results from a recent study requiring dual task learning support a re-
fined model with a single fast adaptive state arranged in parallel with
multiple slow processes switched on the basis of contextual cues (Lee &
Schweighofer, 2009). Here, we extend this 1FnS model to accommodate
different learning and forgetting rates for the different tasks while also
allowing the task-dependent modules to compete in determining behavior.

Consider the special case of an adaptation paradigm with two tasks, and
therefore employ an adaptation model having one common fast state and
two slow states, each specific to one task (i.e., a 1F2S model). The learning
dynamics for the 1F2S model are described by equations 2.1 through 2.4.
Specifically, the update equation for the shared fast state is given by

x f
k+1 = a f · x f

k + b f · ek, (2.1)
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Figure 1: Two examples of multiple-task adaptation models. (A) The n-fast
n-slow model (nFnS) model akin to the MOSAIC model (Wolpert & Kawato,
1998). Error e updates the selected pair of fast and slow processes corresponding
to contextual cue c, which protects the unselected pairs of fast and slow pro-
cesses from interference. (B) The 1-fast n-slow model (1FnS) model. e updates a
common fast process and one of N parallel slow processes selected by c, which
protects the unselected slow processes from interference.

where x f
k corresponds to the fast state on trial k, constants af and bf corre-

spond to the state retention and error gain parameters, respectively, and ek
corresponds to the performance error on trial k. The update equations for
the slow states are given by

xs1
k+1 = as1 · xs1

k + bs1 · us1
k · ek,

xs2
k+1 = as2 · xs2

k + bs2 · us2
k · ek, (2.2)

where the variables us1
k and us2

k are mutually exclusive task selection vari-
ables that determine which task influences performance on trial k and which
slow state is to be updated based on the performance error. In our model, us1

k
and us2

k are determined by contextual cues. As described below, the values
of us1

k and us2
k reflect the result of a competition between responsibility sig-

nals rs1
k and rs2

k associated with the slow state components of the adaptation
model. Performance on trial k is given by

yk = x f
k + xs1

k · us1
k + xs2

k · us2
k , (2.3)
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whereas the performance error is given by

ek = (ŷs1 − yk) · us1
k + (ŷs2 − yk) · us2

k , (2.4)

where ŷs1 and ŷs2 correspond to the desired motor outputs for tasks 1 and 2,
respectively. For the special case of two tasks, it is possible to define a single
task selection variable uk (no superscript) as uk = us1

k such that us2
k = 1 − uk

(i.e., us1
k and us2

k sum to 1). To enforce the exclusivity condition such that
only one model is selected on any given trial, we further constrain the task
selection variables such that us1

k · us2
k = 0 or, equivalently,

C(uk) = uk(1 − uk) = 0. (2.5)

2.1.1 Schedules That Maximize Long-Term Retention in Multitask Motor
Learning. To derive the optimal schedule, it is necessary to specify an opti-
mality criterion or “cost function” Jk, typically defined as the sum of path
costs (i.e., the cost rate l(·)) and final costs (i.e., boundary costs h(·)) (cf.,
Bryson & Ho, 1969). This cost function is subject to dynamic constraints de-
scribed by equations 2.1 to 2.3 and a constraint on the task selection variable
described by equation 2.5.

Our goal is to maximize long-term retention of performance for both
tasks. Long-term retention for any given task depends on the final state
of the slow process for that task, as current performance itself is not a
good indicator of long-term retention (Joiner & Smith, 2008). The interme-
diate cost rate l(·) is therefore zero, and we define the final cost as the
average mean square difference between the desired performance and the
slow process for each task at the end of training. The cost function J is
therefore

J(x) = hL = h(xs1
L , xs2

L ) = [(εs1
L )2 + (εs2

L )2]/2 (2.6)

where we define the slow state errors εs1
k = (xs1

k − ŷs1) and εs2
k = (xs2

k − ŷs2)

and L as the total number of trials in the training sequence. Thus, the
scheduling problem is solved by minimizing the difference between the
values of the slow state memories and their desired values at the end of
the training schedule. That is, the optimal training schedule u∗

1:L is the one
that minimizes equation 2.6 over all possible training schedules, thereby
maximizing long-term retention driven by task-specific, slowly decaying
motor memories:

u∗
1:L = arg min

u1:L

(J). (2.7)
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2.2 Deriving Optimal Schedules via Pontryagin’s Maximum Principle.
We used Pontryagin’s maximum principle (Kirk, 1992) and the 1F2S model
to determine the optimal schedule for the two-task adaptation paradigm.
Pontryagin’s maximum principle allows a difficult optimization problem
over many time steps (e.g., see equation 2.7) to be reduced to a series of
simpler optimization problems over single time steps (see below). To do so,
one can define an augmented Hamiltonian function H(·) (Kirk, 1992) as a
weighted sum of the cost function J(·) and additional costs associated with
the dynamic and control constraints:

Hk(xk, uk, λk+1, γk+1) = J(x) + f (xk, uk)
T · λk+1 + C(uk) · γk+1, (2.8)

where xk = {x f
k , εs1

k , εs2
k }T is the state vector, f (xk, uk) represents the sys-

tem dynamics corresponding to equations 2.1 and 2.2, λ is the Lagrange
multiplier vector whose elements are the costates associated with the state
constraints, and γ is the costate associated with the control constraint. When
the Hamiltonian is minimized with respect to small changes in the state and
control variables, three desirable conditions are satisfied: the final cost is
minimized, the state transition dynamics are enforced, and the control con-
straint is enforced. We use the Hamiltonian to identify the training schedule
that satisfies equation 2.7 while also satisfying the constraints imposed by
the system dynamics and control constraint.

More specifically, taking the partial derivative of the Hamiltonian with
respect to the λ costates and the γ costate yields the constraints (see equa-
tions 2.1–2.2 and 2.5, respectively). Taking the partial derivative of the
Hamiltonian with respect to the states xk yields the costate update equations
for our minimization problem:

λ1
k = ∂H

∂x f
= (a f − b f ) · λ1

k+1 − bs1 · rk · λ2
k+1 − bs2 · (1 − rk) · λ3

k+1, (2.9)

λ2
k = ∂H

∂εs1 = −b f · rk · λ1
k+1 + (as1 − bs1 · rk) · λ2

k+1 + εs1
k , (2.10)

λ3
k = ∂H

∂εs2 = −b f · (1 − rk) · λ1
k+1 + (as2 −bs2 · (1−rk)) · λ3

k+1 + εs2
k ,

(2.11)

γk = ∂H
∂r

= (−b f · εs1
k +bf · εs2

k ) · λ1
k+1 + (−bs1 · x f

k −bs1 · εs1
k ) · λ2

k+1 + . . .

+ (−bs2 · x f
k − bs2 · εs2

k ) · λ3
k+1 + (1 − 2rk) · γk+1. (2.12)

Here, we have defined a differentiable “responsibility signal” rk, which
corresponds to the discrete task selection variable uk with its exclusivity
constraint relaxed. This step is necessary so that the partial derivative of
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the Hamiltonian with respect to variations in the task selection sequence
be nonsingular, according to equation 2.12. Responsibility signals in mul-
timodule adaptive systems have the properties that they lie between zero
and one and sum to one over all contributing models (Wolpert & Kawato,
1998). Hence, the responsibility signal represents the extent to which each
model accounts for the behavior of the system (task 1: rk; task 2: 1 − rk).

The optimal control sequence can be determined using an approach
based on Todorov (2007). First, Given an arbitrary initial sequence of re-
sponsibilities r1:L, generate the task-exclusive sequence uk by enforcing a
winner-take-all competition on rk (e.g., by rounding up or down to 1 or 0).
Iterate the system dynamics forward in time (i.e., trial by trial) to obtain
a candidate sequence of states. Second, with the resulting responsibility
and state sequences defined, iterate equations 2.9 through 2.12 backward in
time to obtain the costate sequences. At each time step (trial), improve the
candidate responsibility sequence via gradient descent of the Hamiltonian:

rk = rk − α · drk, (2.13)

where α is a small update rate, and

drk = ∂H
∂r

. (2.14)

These two steps are repeated until rk has converged to r∗
1:L.

2.2.1 Comparison with Genetic Algorithm and Brute-Force Search Methods.
Although the deterministic Pontryagin’s maximum principle yields the
true optimal result in theory, our simulation results are not guaranteed to
always return the true optimal. This is because the result depends on the
initial schedule, and iteration stops when incremental reduction in cost
becomes smaller than a given threshold (e.g., 10−10), which conceivably
could settle into a local, rather than global, minimum. In order to verify the
validity of our theoretical methods, we applied a genetic algorithm (GA)
method to determine optimal schedules and then compared the results
with those from Pontryagin’s maximum principle. The GA is a stochastic
optimization algorithm: a pool of schedules (i.e., genes) in each “generation”
of the simulation can exchange a random portion of the schedule (genetic
crossover) and can randomly change bits of the schedule (genetic mutation).
Only schedules with better performance—those schedules that minimize
the cost of equation 2.6—survive to the next generation (i.e. eliticism).

In addition, for a small number of total trials K = 20, we performed
a brute-force search to calculate costs of all possible 220 binary schedules
(see appendix B). We then compared the optimal schedule obtained using
Pontryagin’s maximum principle method with the true optimal schedule
from the brute-force search.
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2.3 Simulations. We first computed optimal schedules in simulations
of a single-session adaptation paradigm with two tasks in which we var-
ied both the relative task difficulties between the two tasks and the total
number of training trials (20, 40, and 80 trials). Although difference in task
difficulty is commonly experienced in actual motor learning, it is unclear
how to operationalize it. Is a task difficult because initial progress is slow,
later progress is slow, or final performance is low—or because of all of
these? Here, to simplify, we modeled task difficulty with a single difficulty
parameter that simultaneously affects initial change in performance, later
change in performance, and final performance. Specifically, we defined rel-
ative task difficulty of the second task compared to the first task with a
difficulty parameter d that affects both fast and slow process learning rates:

b f 2 = b f 1/d; bs2 = bs1/d. (2.15)

Note that we used two different fast learning rates (b f 1 and b f 2) to update
the common fast process motor memory. For example, if the more difficult
task is twice as difficult as the easier task, the same error results in only half
the increase of the fast process. While fixing the learning rates of one task
(the “easy task”), we increased task difficulty of the other task (the “difficult
task”) from d = 1.0 to d = 5.0 as steps of 0.1. To simplify, the two tasks were
assumed to have opposite signs with the same magnitude, such that ŷs1 = 1
and ŷs2 = −1. The default parameter set, estimated in a previous visuomotor
rotation experiment (Lee, 2011), was taken as a f = 0.965, as = 0.993 and
b f = 0.597, bs = 0.114. To extend the validity of our results to other types of
adaptation, we performed a sensitivity analysis for these parameters (see
appendix A).

We also compared the costs of the two tasks after optimal, alternating,
and blocked schedules. We set the initial schedule as the alternating sched-
ule, because this schedule maximizes long-term retention in the case of
equal task difficulties in the 1FnS model (Schweighofer et al., 2011). Start-
ing with the alternating schedule, Pontryagin’s algorithm was repeated
until the cost reduction became smaller than 10−10 from one iteration to the
next with the update rate α = 0.05.

After we obtained the simulated optimal schedule (as a series of 0s and
1s, with 1 coding for presentation of the easy task and 0 for presentation
of the difficult task), we computed the switching index and the percentage
of trials for the difficult task. The switching index is the number of task
switches divided by the maximum possible number of switches. Thus, for
the initial alternating schedule, the percentage of trials for the difficult task is
50% and the switching index is 1. For the blocked schedules, the percentage
of trials for the difficult task is still 50%, but the switching index is low
and equal to 1/(total trial number − 1). In order to discount computational
boundary effects deriving from the unavoidable arbitrary assignment of the
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Figure 2: Simulated optimal schedules for total trial numbers 20, 40, and 80.
White blocks show the trials at which the easy task is scheduled and the black
blocks for the difficult task. Two optimal schedules for relative task difficulties
d = 1.0 and 5.0 are shown as examples within the red bars. Note that for d = 1.0,
the optimal schedule is the alternating schedule regardless of the total number
of training trials.

costate values at trial L + 1 (see equations 2.9 to 2.12), the last two simulated
trials were excluded from calculations of switching index and percentage
of scheduled trials for the more difficult task.

For the GA simulations, we set the rate of crossover at 0.8 and the rates of
mutation and eliticism at 0.03. We repeated this algorithm running through
1000 generations, starting from a population of 1000 random schedules. We
finally chose the schedule in the last generation that minimizes the cost of
equation 2.6. We then compared the schedules and cost obtained via GA
and those obtained via the Pontryagin’s maximum principle method.

3 Results

We first simulated optimal schedules for the 1F2S model with increasing
values of the task difficulty parameter d and for 20, 40, and 80 total trials
(see Figure 2). We chose these trial numbers because they typically span
the number of trials needed for asymptotic performance in visuomotor
adaptation experiments. When both tasks were of similar difficulty, the
alternating schedule was the optimal schedule, with half the total trials
assigned to each task. As the difficulty of the second task increased, the
general trend was that more trials were assigned to the difficult task (black
boxes in Figure 2). The resulting small trial blocks had the tendency to be
distributed evenly throughout the training sequence.

Figure 3A shows the switching index (upper row) and the percentage
of trials for the difficult task (lower row) as a function of relative task
difficulty. There were relatively large thresholds of task difficulty below
which the alternating schedule was optimal. These thresholds were 2.5,
2.1, and 1.8 for the total trial number 20, 40, and 80, respectively. As task
difficulty increased further, the switching index decreased with several
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Figure 3: Nonlinear characteristics of the optimal schedules as a function of
relative task difficulty for the 1F2S model. (Top row) Switching index, calculated
as the number of switches of one task to the other divided by the maximum
possible number of switches. (Bottom row) Percentage of number of trials for
the difficult task. For the perfect alternating schedule, the switching index is 1,
and the percentage of difficult task is 50%. Note that for task difficulty less than
around 2.2, alternating schedules are optimal.

plateaus. For the simulated range of task difficulties, the final plateau of
the switching index was around 0.53, 0.51, and 0.51 for training sequence
lengths of 20, 40, and 80 trials, respectively. A similar trend can be seen in
the increase in the percentage of trials for the difficult task (see Figure 3B),
with a high (negative) correlation between the two quantities. This high
correlation arose because the optimal schedules were small blocks of trials
of the difficult task evenly separated by a single trial of the easy task, as
illustrated in Figure 2. The final plateau for the percentage of the difficult
task was around 72%, 74%, and 76% for the total trial number 20, 40, and
80, respectively. Overall, this indicates that three times more trials were
assigned to the difficult task than the easy task when the tasks were different
in difficulty by a factor of 5.

Updates of the slow and fast processes during training for optimal and
alternating schedules are shown in Figure 4 for relative task difficulty d =
5.0 and 40 training trials. The combined final value of the slow process states
(i.e., the quadratic mean of the two slow processes) following the alternating
schedule was 94% that of the optimal schedule (100% and 85% for the easy
and difficult task, respectively). Therefore, the optimal schedule achieved
not only better overall final retention, but also better balance between the
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Figure 4: Examples of updating within fast and slow process motor memories
in the 1F2S model for task difficulty d = 5.0 and 40 total trials. (Left) Optimal
schedule, OPT. (Right) Alternating schedule, ALT. Markers (dots) represent the
trials assigned to the two tasks. Note how in OPT, scheduling of the easy task
once every four trials (in most cases) keeps the fast process near 0 most of the
time. This increases overall performance errors, which results in an increase in
the update of the slow process for the difficult task (and thus, overall retention
performance at the end of training). In contrast, in the ALT schedule, the fast
process has a relatively high (absolute) level of activity throughout.

two tasks compared to the alternating schedule. However, these differences
are relatively small, even for a large difference in task difficulty as in this
example.

Figure 4 (left panel) illustrates why the optimal schedule generates (in
most cases) small blocks of trials for the difficult task separated by one
trial for the easy task. Separations between small blocks of the difficult task
implement a compromise between assigning more trials to the difficult task
and minimizing the block lengths. As a result, there is a minimal update
of the fast process throughout the optimal schedule (see the red line in
the left panel). This results in increased performance errors and allows
greater update in the slow process of the difficult task, while not being too
detrimental for the easy task, and thus optimizes final retention for both
tasks.

We then systematically studied the difference among optimal, alternat-
ing, and blocked schedules. Although the alternating schedule was optimal
only only up to a certain threshold (as shown in Figure 3), Figure 5 shows
that the alternating schedule achieved almost as much final retention as
the optimal schedules for a wide range of task difficulties: costs of the al-
ternating schedule are almost same as those of the optimal schedules up
to task difficulty d = 3.0, and 110%, 120%, and 130% of those of the opti-
mal schedules for 20, 40, and 80 total trials, respectively, at task difficulty
d = 5.0. Thus, for a wide range of task difficulties tested for the 1F2S model,
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Figure 5: Costs at the end of training for K = 20, 40, and 80 total trials as a
function of task difficulty for three different schedules: the optimal schedule
(OPT), the alternating schedule (ALT), and the blocked schedule (BLK). Note
how the alternating schedules yield similar costs as the optimal schedules in
most cases. The five circles in each panel show costs generated by the genetic
algorithm. The five stars in the K = 20 panel represent costs calculated from the
true global optimum using brute-force search.

the alternating schedule is practically as effective as the optimal schedule in
increasing the accumulated learning within the state variables of the slow
processes.

To verify the validity of our results overall, we used two approaches.
First, we adopted a computationally expensive genetic algorithm (GA) ap-
proach to determine optimal schedules “experimentally” and compared
the results with these of Pontryagin’s maximum principle method for all
schedule lengths. Figure 5 shows that the two methods provide almost
identical performance results for a range of task difficulties and different
total number of trials (less than 1% difference in performance), although
the schedules found by the two methods could differ slightly as parameter
dincreased. Second, for the small schedule with 20 total trials, we performed
a brute-force search of all possible schedules for the relative task difficulty
parameter d = 4 (see appendix B). Such a search shows that the true op-
timal is very near the optima found by the maximum principles and the
GA method for a range of difficulties (see Figure 5, left). In addition, the
brute search reveals how close the alternating schedule is to the true opti-
mal, even with large relative difficulty between tasks (see Figure 7). Finally,
comparing the true optimal schedule from the brute-force search and the
schedule from the maximum principles shows small differences that barely
affect long-term retention, as both schedules have very similar costs (see
Figure 7).

4 Discussion

Our study made three novel contributions. The first contribution is a the-
oretical method to optimize multitask motor learning. To determine the
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optimal schedules, we have used Pontryagin’s maximum principle with
constraints on the system states and the command. We have validated the
results of this deterministic method in the two-task adaptation paradigm
with the results of a stochastic method based on genetic algorithms. Al-
though we determined the schedules in motor adaptation tasks, these opti-
mal schedules can be applied to any types of learning (e.g., motor learning in
healthy subjects, motor retraining after stroke, associative learning, declar-
ative learning) for which the state and control variables can be represented
in differentiable form (e.g., see equations 2.9 to 2.12). Thus, our method can
also be applied to motor rehabilitation to determine the schedule of multi-
ple tasks training, as state-space models of recovery and rehabilitation have
been proposed and validated (Casadio & Sanguineti, 2012; Hidaka, Han,
Wolf, Winstein, & Schweighofer, 2012; Scheidt & Stoeckmann, 2007). Simi-
larly, at least in theory, this method could also be used to schedule multiple
tasks in association experiments, and even in certain cognitive experiments,
as long as state-space models are applicable (Smith & Brown, 2003; Kording,
Tenenbaum, & Shadmehr, 2007).

The second contribution is that we showed that under conditions of
task interference in the fast process, there exists a threshold in relative task
difficulty below which the alternating schedule is the true optimal sched-
ule. The third contribution is that for a large range of task difficulties, we
found that there is little difference in long-term retention following optimal
and alternating schedules. In addition, our results shed light on the well-
established contextual interference (CI) effect (Schmidt & Lee, 2005; Shea &
Morgan, 1979), in which intermixing tasks during training led to enhanced
retention compared to learning tasks sequentially. Our results suggest that
the CI can be observed even for tasks of different difficulties. When inter-
ference is high, the alternating schedules are clearly superior to the blocked
schedules.

What is the mechanism leading to the task difficulty thresholds below
which the alternating schedule is the true optimal schedule? In our sim-
ulation of the 1F2S model with two opposing tasks, presenting the other
task reduces activity in the common fast process. As a result, overall perfor-
mance gains are reduced, resulting in greater error in the next trial; this in
turn results in greater update of the error-driven slow processes. Therefore,
when task difficulty differs but stays below threshold, the gain from high
switching probability in the alternating schedule is greater than the loss of
update in the difficult task resulting from assigning equal numbers of trials
to both tasks, hence creating the threshold.

Comparison of the results from Pontryagin’s maximum principle and the
GA method show very similar final costs for a broad range of relative task
difficulties (see Figure 5), which for the special case of 20 total trials are only
slightly greater than the true optimal cost found by the brute-force search.
As long as tasks alternate with small blocks of the difficult task intercalated
between single trials of the easy task, retention is very high and difference
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in cost with the optimal schedule minimal. Note that besides brute-force
search for a smaller schedule, we have used two optimization techniques:
the deterministic Pontryagin’s maximum principle and a stochastic GA
method. A third possible method, dynamic programming, could also be
used to determine optimal schedules. We leave for future work the explo-
ration of dynamic programming to determine optimal schedules in motor
adaptation.

Our study has a number of limitations that could also be addressed in
future work. First, because this is a simulation study, our results depend
on our choice of models. To increase the validity of our results, we have
performed several sensitivity analyses whereby we have varied the rela-
tive task difficulty, the number of trials, and learning and forgetting rates.
Overall, the results show the existence of a difficulty ratio threshold below
which the alternating schedule is nearly as effective in increasing long-term
retention as the optimal schedule.

A second limitation is that we have studied optimal schedules for only
two tasks in a single session, in which adaptation occurs at least at two
different timescales. Studies of memory consolidation over multiple days
show that additional processes with much longer timescales may play im-
portant roles during long-term motor learning (Criscimagna-Hemminger
& Shadmehr, 2008). We leave scheduling of multiple tasks and scheduling
over multiple sessions for future work. A third limitation of our study is
that we have studied optimal scheduling only for multiple motor adap-
tation tasks with no generalization between tasks. Generalization effects
can be implemented by adding parameters to the slow process (Tanaka,
Krakauer, & Sejnowski, 2012), and optimal schedules could be determined
with this new model.

Finally, in a practical application of our study, determination of the op-
timal schedule would largely depend on accurate parameter estimation,
including learning rates, forgetting rates, and degree of interference be-
tween tasks. In particular, we expect that accurate parameter estimation
would be crucial when determining schedules for tasks of vastly different
difficulties. Extrapolating our finding suggests that for this case, the optimal
schedule could be truly superior to the alternating schedule. However, in
most practical applications with tasks of similar difficulty, our simulation
results suggest that the alternating schedule may be a near-optimal choice
for enhancing long-term retention of motor learning.

Our study makes three counterintuitive yet practical predictions for a
large range of tasks. First, therapists, coaches, and teachers should design
the training schedule to include interfering tasks. Second, tasks should be
scheduled alternatively or pseudorandomly; the details of the schedules do
not matter to a great extent as long as switching occurs frequently and more
of less evenly. Finally, if only a single training session is available, trainers
can ignore task difficulty (unless extremely different) and assign a similar
number of trials for all tasks according to an alternating schedule.
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Appendix A: Model Parameter Sensitivity Analysis

One of the main findings on the optimal schedule with the 1F2S model was
the existence of a threshold of task difficulty below which the alternating
schedule is optimal (see Figure 3). This result was obtained with a specific
set of parameters in a visuomotor experiment. However, depending on
the specifics of the experimental protocol of the task, or depending on the
adaptation tasks (e.g., visuomotor rotation, saccadic adaptation), parame-
ters will vary. Here we show that the existence of the threshold is a general
phenomenon across a wide range of learning and retention parameters. In
the main text, we ran simulations based on the estimated set of parameters
from a visuomotor rotation task:

Easy task: a f = 0.965, as = 0.993, b f = 0.597, bs = 0.114

Difficult task: a f = 0.965, as = 0.993, b f = 0.597/d, bs = 0.114/d,

where d > 1 defines a relative task difficulty of the more difficult task. The
threshold for this set of a and b values was d = 2.3. In order to simplify the
sensitivity analysis, we introduced two variables that define relative values
of learning and retention parameters between fast and slow processes: b f /bs

(the ratio of fast learning gain to slow learning gain) and log10(τ
s/τ f ) (the

logarithmic ratio of a slow time constant compared to a fast time constant),
where the time constants are defined from a retention parameter, τ = 1

1−a .
In simulations, we fixed τ f at 28.57 and bs at 0.114.

Figure 6 shows that the threshold is greater than 1 for a large range model
of parameters. The threshold decreases as the slow time constant increases
and increases as b f /bs increases. Summarizing, the result shows that the
alternating schedule is optimal unless one of the tasks is a lot more difficult
than the other (up to thresholds), and this holds true for a wide range of
parameters, with the thresholds depending on the ratio of fast and slow
learning gains.

Appendix B: Brute-Force Search

Our main optimization algorithm produced schedules that could have be-
come trapped in a local minimum. Here, our goal is to examine how close
the final cost obtained from our optimization algorithm is to the true global
minimum cost. We performed a brute-force search of the optimal schedule
for K = 20 total trials (for 40 and 80 trials, the brute-force search becomes
computationally prohibitive). We generated all possible 220 � 106 schedules
of K = 20 and calculated the final cost at the end of training for each of these
schedules. We then sorted these 220 costs from the smallest to the largest.
We defined the rank of each schedule as the order in this sorted list (rank 1
as the smallest).



Optimal Schedules in Multitask Motor Learning 683

Figure 6: Threshold of task difficulty below which the alternating schedule is
optimal. The gray scale shows the threshold. The horizontal axis represents the
ratio of fast and slow gains, and the vertical axis represents the logarithmic ratio
of slow and fast time constants. For all simulations, τ f was fixed at 28.57 and
bs was fixed at 0.114, the parameters of the original simulation in the main text.
The small red square indicates the parameters closest to the original parameter
set used in the main text.

Figure 7: Cost from all possible schedules with 20 total trials for the 1FnS model
and relative difficulty between tasks d = 4, sorted in ascending order (rank).
Note that the optimal schedule OPT has a cost that is very close to the true
minimum, the alternating schedule ALT has a cost and rank that is close to the
true optimal, and the blocked schedule BLK has a very high rank and cost.
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Figure 7 shows the costs of all possible schedules in ascending order (with
relative task difficulty d = 4). Circles represent the corresponding ranks and
costs of our algorithm’s optimal schedule, alternating schedule, and blocked
schedules. Ranks of these schedules were 0.13%, 8.62%, and 99.97% of the
220 schedules, respectively. Corresponding costs were 0.3186, 0.3485, and
0.6422, respectively, while the true minimum cost was 0.3073. Thus, both
ranks and cost show that the schedule determined by the optimization
algorithm is very close to the true optimal. In addition, the alternating
schedule has both very low cost and rank.
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